Name Clustering on the Basis of Parental Preferences

Gerrit Bloothooft and Loek Groot Utrecht University, The Netherlands

Parents do not choose first names for their children at random. Using two large datasets, for the UK and the Netherlands, covering the names of children born in the same family over a period of two decades, this paper seeks to identify clusters of names entirely inferred from common parental naming preferences. These name groups can be considered as coherent sets of names that have a high probability to be found in the same family. Operational measures for the statistical association between names and clusters are developed, as well as a two-stage clustering technique. The name groups are subsequently merged into a limited set of grand clusters. The results show that clusters emerge with cultural, linguistic, or ethnic parental backgrounds, but also along characteristics inherent in names, such as clusters of names after flowers and gems for girls, abbreviated names for boys, or names ending in -y or -ie.

Introduction

The variety in personal given names has increased enormously over the past century. In the Netherlands, the top 3, top 10, and top 100 names account, respectively, for $16 \%, 33 \%$, and 70% of the first names of elderly born between 1910 and 1930, while these figures are $3 \%, 8 \%$, and 39% for babies born between 2000 and 2004. Comparable figures are presented by Galbi $(2002,4)$ for England and Wales. Along with the increase in the variety in names, the motives behind the choice of names for children by their parents have changed from a more or less prescribed naming after relatives to a free decision, a process that was facilitated in the Netherlands by the tolerant name law of 1970. This does not mean, however, that naming norms are absent in the naming practice. As Tucker (2003, xxvii) has shown, many forenames are still indicative of cultural, ethnic or linguistic (CEL) groups within a population.

In the last two decades we saw a proliferation of statistical analyses of name datasets, especially with respect to ethnicity classification. This is largely due to the availability of large digital name datasets, an increasing need for reliable data on the size and geographical distribution of ethnic minorities in countries to monitor
inequalities between ethnic groups in health status, educational achievements, and job careers, and a growing interest in international migration patterns. ${ }^{\text {I }}$ Mateos (2007) provides an excellent review of the name-based ethnicity classification literature, mainly limited to studies which meet certain accuracy standards and evaluate their classification results against a non-name-based ethnicity information source. As Mateos notes, the fundamental trade-off in these classifications is between maximizing coverage and maximizing accuracy: the more disaggregated the ethnic groups are defined to maximize coverage, the more misclassifications (so-called false positives) result, compromising the accuracy of the classification.

Tucker (2003) has developed a technique to classify surnames in Cultural-Ethnic-Linguistic groups, and used the results to compile a Dictionary of American Family Names (DAFN). The aim of DAFN is to maximize for people the chance to find their surname as an entry in the dictionary. His method is as follows. First, using a large dataset of 89 million telephone subscribers, he showed that about 4% (slightly above 70 thousand) of all r .75 million different surnames covers 85% of the total population. Second, a team of experts were set to the task of classifying the 70 thousand surnames into 23 pre-defined CEL groups. For a large fraction (20%), they were unable to assess with any confidence even the language of origin. Third, a statistical analysis on forename-surname correlation was performed. Specific forenames can be highly diagnostic for particular CEL groups if they are rarely used outside a particular CEL group (examples given are Niamh for Irish and Giuseppe for Italian). A limited set of 8000 highly diagnostic forenames were manually classified into CEL groups by onomastic experts. Fourth, using this diagnostic list a fore-name-cluster analysis was performed to merge forenames belonging to the same group. Finally, for each surname the distribution of forename CEL scores is given in the dictionary. Using this method, Tucker reduced the percentage of unidentified surnames from 20 to only 3%.

Mateos, Webber, and Longley (2007) also rely on what they call the CEL-triage technique, supplemented by other information provided by other techniques such as spatio-temporal analysis, geodemographics analysis and text mining (see sections $3.2-3.4)$ to subdivide the entire UK population and to classify every surname and forename with a frequency of 3 or higher in Britain in 2004 into 185 CEL-types (a subdivision of 15 CEL groups).

Harding et al. $(1999,48)$ use the Nam Pelchan South Asian Names dictionary as a reference list to estimate the size of the Sikhs, Moslem, and Hindu population in Bradford, UK. Lauerdale and Kestenbaum (2000) identify six major Asian-American ethnic groups by combining a name dataset which included country of birth and a name dataset with information on race (white, black, other) for persons 60 years or older. Each surname has a score for the proportion with the associated Asian country of birth (e.g. 80% Vietnamese) and for the proportion with race 'other'. Only surnames with a sufficiently high score on the product of both scores are considered as sufficiently predictive to identify persons with these names as belonging to one of the six categories Asian-American groups.

The limitation of the previously mentioned studies ${ }^{2}$ is that some pre-defined classification is needed - largely based on language, origin and religion - in
combination with expert knowledge. Furthermore, the sizes of the classes can differ considerably. In the Mateos (2007) study, out of the 46 million British people classified, 3 I million came into the CEL type England, and another 10 million in the CEL types Scotland, Wales, and Ireland. Whereas the identification of the other, much smaller CEL groups related to ethnic minorities is certainly very valuable, a further subdivision of the massive CEL groups may give additional insights, particularly in the relation between socioeconomic factors and naming. In order to make this possible, and to circumvent a lack of data that could define additional factors, we took an entirely different approach. Instead of the largely top-down methods discussed before, we adopted a bottom-up method by studying the naming preferences of parents. In this approach, the assumption is that parents tend to give names to their children on the basis of preferences that are influenced by their social group (see also Fryer and Levitt (2004) for an analysis of differences in naming patterns between blacks and whites and of the growth of distinctively black names following the Black Power movement in the early 1970s). Given a sufficient number of parents that share these preferences, we can identify names as belonging to what we label as name groups. These name groups can resemble CEL groups or CEL types, but they may also show a much finer structure. A name group could consist of, for example, Frisian names, but also of girls' names after flowers or gems, or abbreviated names.

To identify these name groups, we will exploit the statistical information in name corpora, containing the names of children born in the same family. We have access to a full sample of names for children born in between 1982 and 2005 in the Netherlands and a 40% draw of all children born in between 1982 and 2002 in the UK. By exploiting the conditional probability that a combination of names can be found for children within the same family, it will turn out that some names have a stronger association to each other than to other names. This is the basis for their clustering in name groups. A major part of this paper is devoted to the design of an appropriate statistical method for their identification. An outline of the method has been presented already in Bloothooft (2001, 2002), but is now given a new and solid mathematical foundation. The quintessence of a truly bottom-up method is that, besides some setting of parameters, no additional information is being used.

This paper is structured as follows. In section 2 we shortly describe our name databases. Sections 3 and 4 comprise the methodological part. Section 3 explains how the phenomenon that some names are strongly connected to each other can be expressed in terms of conditional probabilities, defined as the likelihood that a younger sibling of a child with name i has name j. In section 4 , the conditional probabilities are used to cluster names into name groups. The purpose of the cluster process is to identify sets of names that have a high probability to be found in the same family. We will demonstrate that it is beneficial to make a distinction between a cluster level that shows fine details and a higher level of grand clusters that summarizes the major features of the fine clusters. The information processed in the derivation of grand clusters covers the whole continuum in the naming practice of parents: they can choose names for all of their children from a single fine cluster, from one or more related clusters, but also definitely not from certain other clusters. A paradigmatic example of the latter is that names from the Western and Arabic clusters are virtually never to be found in the same family. We conclude with an annotated
presentation of all grand and fine name clusters for both the Netherlands and the UK.

Name databases

The Dutch Social Security Bank (SVB) made available to us the initial first name, gender and year of birth of all children born in the Netherlands between 1982 and 2005. The SVB draws these data directly from the Civil Registration. In addition to the names, we also got a code by which children in the same family could be identified. The corpus consists of the initial first name of 4.65 million children, of which 3.54 million were born in 1.46 million families with more than one child, which is a condition for our further analysis.

The same type of data was received from the HM Revenue and Customs in the UK. The sample includes the initial first name of children born in between 1982 and 2002. For privacy reasons, names with a frequency less than 60 were removed from the full sample, as were their siblings. Subsequently, a random draw of 40% was performed. This corpus includes the initial name of 4.46 million children, born in 1.80 million families.

We believe that both corpora are exquisite data sets to investigate whether, and which, name groups exists. There are however some differences between both corpora. Whereas the size of the Dutch and UK corpora are similar, the number of different names in the corpora differs considerably. In the Netherlands there are 68,230 different names for boys and 84,354 different names for girls, while for the UK corpus this is 26,253 and 35,293 respectively. This difference is a consequence of deleting names with a frequency less than sixty and does not necessarily imply that naming in the Netherlands is more varied than in the UK. Other related differences in the distributions of our corpora are that popular names in the UK cover a higher percentage of all children, while the number of low-frequent and unique names is lower than in the Netherlands.

Name pairs

We assume that parents do not name their children in a random way. This implies that the name of the older child can be of predictive value for the choice of the names of subsequent children. We express this relationship by the conditional probability $\mathrm{P}\left(\right.$ name $_{\mathrm{i}} \mid$ name $\left._{\mathrm{i}}\right)$. For easier interpretation, we will use the example names John and Mary throughout this paper. The conditional probability $\mathrm{P}(J o h n \mid M a r y)$ presents the likelihood that a younger brother of Mary will be named John. If this likelihood is high, it demonstrates a close relationship between the two names. $\mathrm{P}(J o h n \mid$ Mary $)$ is calculated by selecting all families with a girl named Mary, count all occurrences of a younger brother John ($N_{\text {Jobn|Mary }}$) and divide this by the number of all younger brothers of Mary until and including a boy named John ($\mathrm{N}_{\text {YoungerBrothers|Mary }}$). Thus

$$
\begin{equation*}
P(\text { John } \mid \text { Mary })=\frac{N_{\text {John } \mid \text { Mary }}}{N_{\text {YoungerBrothers } \mid \text { Mary }}} \tag{I}
\end{equation*}
$$

It is not known how many younger brothers of Mary will be born after the end of our data range. However, we think that this uncertainty only has a small effect given our time span of over twenty years. In the initial years of our corpora only starting families were included.

In Table I we present the top ten probabilities of a name for a brother or sister of Maria in the Netherlands, and of Mary in the UK. The top ten covers about 20% of the names of all younger brothers and sisters of Maria and Mary, while this is 40% for the top ten of brothers of Mary. The names are of a rather traditional type and we may conclude somewhat prematurely that when parents choose the traditional name Maria or Mary for a daughter, they are likely to choose a traditional name for other children as well. It is a first indication that knowledge of names of children in a family conveys interesting information on parents' naming preferences. Note that, taking Mary as the English equivalent of the Dutch Maria and John of Jan, Table i

TABLE 1
THE TOP TEN NAMES OF YOUNGER BROTHERS AND SISTERS OF MARIA IN THE NETHERLANDS (BASED ON 16,347 MARIA'S WITH 9201 YOUNGER BROTHERS AND 8471 YOUNGER SISTERS) AND OF MARY IN THE UK (BASED ON 2878 MARY'S WITH 1685 YOUNGER BROTHERS AND 1579 YOUNGER SISTERS)

Probabilities are expressed as percentages

Maria (NL)		Mary (UK)	
brothers	\%	brothers	\%
Johannes	6.17	John	7.91
Cornelis	3.21	Michael	6.12
Jan	2.51	James	5.32
Petrus	1.85	David	3.47
Willem	1.70	Patrick	2.88
Hendrik	1.65	William	2.56
Pieter	1.73	Peter	2.34
Marinus	1.49	Martin	1.85
Gerrit	1.47	Robert	1.85
Martinus	1.20	George	1.65
sisters	\%	sisters	\%
Johanna	5.11	Sarah	4.60
Anna	3.35	Elizabeth	2.85
Cornelia	2.52	Alice	2.49
Elisabeth	2.21	Catherine	2.18
Catharina	1.73	Anna	1.74
Adriana	1.52	Margaret	1.63
Wilhelmina	1.05	Kathleen	1.19
Petronella	0.94	Ruth	0.97
Hendrika	0.85	Ann	0.76
Jacoba	0.83	Frances	0.65

exhibits some more equivalents. Among the brothers we find (Johannes, Jan, Willem, Petrus, Pieter, and Martinus) for Maria, corresponding to (John, William, Peter, and Martin) for Mary. The same goes for the sisters, with the Dutch set (Anna, Elisabeth, and Catharina) corresponding to (Ann, Anna, Elizabeth, and Catherine).

For the full data set, the highest probabilities were found in the UK for Mohammad with a brother Mohammed (24.6%), Tom with a brother Jack (14.2%), Shazia with a sister Nazia ($\mathrm{I} 2.9 \%$), and Lowri with a sister Ffion (I2.I \%). For the Netherlands it is Fatima with a brother Mohamed (16.6%), Yasin with a sister Yasemin (14.5%), Björn with a brother Sven (ir.7\%) and Yunus with a brother Emre (ir.7\%).

The mirror image of the likelihood that Mary gets a younger brother John, is the likelihood that John will get a younger sister Mary. This probability $\mathrm{P}($ Mary \mid John $)$ is usually not the same as $\mathrm{P}($ John \mid Mary $)$. Actual data for John and Mary can illustrate this. It turns out that $\mathrm{P}($ John \mid Mary $)=7.9 \mathrm{I} \%$ and $\mathrm{P}($ Mary \mid John $)=0.9 \mathrm{I} \%$, a difference that originates in the much higher popularity of John (2I,740 John's) compared to Mary (2878 Mary's). The theoretical relationship between both conditional probabilities is expressed as

$$
\begin{equation*}
P(\text { John } \mid \text { Mary })=\frac{P(\text { Mary } \mid \text { John }) \cdot P(\text { John })}{P(\text { Mary })} \tag{2}
\end{equation*}
$$

Since we wish to express the attraction between two names by a single measure, the dependency of conditional probabilities on the popularity of a name poses a problem. However, from (2) it immediately follows that

$$
\begin{equation*}
\frac{P(\text { Joh } n \mid \text { Mary })}{P(\text { Joh } n)}=\frac{P(\text { Mary } \mid \text { Joh } n)}{P(\text { Mary })} \tag{3}
\end{equation*}
$$

and we could use this value as an expression of the attraction $\mathrm{A}(J o h n$, Mary) between two names, that is independent of their order and individual popularity. The measure tells us how more often John is chosen as the name of a brother of Mary than as a name for a boy in general, which equals how more often Mary is chosen as a name for a sister of John than for a girl in general.

Although theoretically attractive, this approach still does not work well in practice, which can be illustrated by an example. Suppose a population has two distinct religious groups, Christians and Muslims, of which there are nine times as many Christians as Muslims. Members of both groups only choose typical names from their own religion. And although Mary and Fatima, and John and Mohammed may be equally popular within their groups, for the whole population the frequencies of John and Mary will by nine times higher than those for Mohammed and Fatima, respectively. This implies that $\mathrm{P}($ John \mid Mary $)=\mathrm{P}($ Mohammed \mid Fatima $)$ and $\mathrm{P}($ Mary \mid John $)=$ $\mathrm{P}($ Fatima \mid Mohammed $)$, but $\mathrm{P}($ Mohammed \mid Fatima $) / \mathrm{P}($ Mohammed $)=9 * \mathrm{P}($ John \mid Mary $)$ / $\mathrm{P}(J o h n)$. In other words, the attraction between two names is dependent on the size of the subgroup in which they are popular. Normally, we do not know this subgroup nor its size beforehand. Otherwise we could define a corrected attraction measure A_{c} such that

$$
\begin{equation*}
A_{c}(\text { John }, \text { Mary })=\frac{P(\text { John } \mid \text { Mary })}{P^{\prime}(\text { John })}=\frac{P(\text { Mary } \mid \text { John })}{P^{\prime}(\text { Mary })} \tag{4}
\end{equation*}
$$

where $\mathrm{P}^{\prime}(J o h n)$ and $\mathrm{P}^{\prime}($ Mary $)$ are the probabilities of John and Mary relative to the size of their subgroup. However, using equation (3), we can estimate these probabilities by considering that for all names related to some subgroup the following conditional relationships hold

```
\(\mathrm{P}^{\prime}(\) Mary \()=\mathrm{P}^{\prime}(\) John \() \mathrm{P}(\) Mary \(\mid\) John \() / \mathrm{P}(\) John \(\mid\) Mary \()\)
\(\mathrm{P}^{\prime}(\) William \()=\mathrm{P}^{\prime}(\) John \() \mathrm{P}(\) William \(\mid\) John \() / \mathrm{P}(\) John \(\mid\) William \()\)
\(\mathrm{P}^{\prime}(\) Elizabeth \()=\mathrm{P}^{\prime}(\) John \() \mathrm{P}(\) Elizabeth \(\mid J o h n) / \mathrm{P}(\) John \(\mid\) Elizabeth \()\)
\(\mathrm{P}^{\prime}(J o h n)=\mathrm{P}^{\prime}(J o h n)\)
```

The sum of the probabilities on the left-hand side is I for all boys and I for all girls since we apply gender specific probabilities. By taking the sum at both sides we arrive at

$$
\begin{equation*}
P^{\prime}(\text { John })=\frac{2}{\mathrm{I}+\sum \frac{P\left(\text { name }_{i} \mid \text { John }\right)}{P\left({\text { John } \left.\mid \text { name }_{i}\right)}^{2}\right.}} \tag{5}
\end{equation*}
$$

where the sum is taken over all known brothers and sisters of John. The relative size R of the subgroup is $\mathrm{P}(J o h n) / \mathrm{P}(J o h n)$. In our example this value would be 0.9 for Christian names and o.r for the Muslim names. In that case, A_{c} (John,Mary) equals A_{c} (Mohamed,Fatima).

Although theoretically A_{c} (John,Mary) should be exactly the same as A_{c} (Mary,John), in practice this is not the case because of inaccuracies in the estimation of the relative size of their subgroup. Therefore we take the average of both values as the final estimate of the attraction between the names John and Mary. If the estimated relative size of the subgroup for the two names differs more than a factor 3 , possibly because the names reside in two different subgroups, we exclude the pair.

Since children with names of low popularity have few brothers and sisters, we will arrive at poor estimates of the conditional and individual probabilities of their names, which would seriously hamper further analysis. To avoid this, we required that for any name there should be at least in total 100 younger brothers to consider for a pair with a male name, and at least 100 younger sisters for a pair with a female name. One more brother or sister with some name then roughly increases the conditional probability by maximally 0.5%, which we considered acceptable given observed probabilities up to 25%.

Finally, we neglect name pairs for which A_{c} is less than one, which implies that a name would have a lower likelihood to be found in that pair than in general. These quite severe restrictions result for the Dutch data in 24,435 name pairs from 1409 names, and for the UK data in $30,8 \mathrm{I5}$ name pairs from 9 I2 names. This is much less than the maximum number of 2 million and 0.8 million pairs ${ }^{3}$ that could be formed from those names in the Netherlands and UK respectively, which suggest severe limitations on the possible pairs. It suggests that clustering of names is viable. The number of 1409 and 912 names that fulfill our conditions is only around $\mathrm{I} \%$ of the total number of different names. However, because these names are highly frequent, their coverage of the total number of children is $75 \%(\mathrm{NL})$ and 87% (UK). For the

UK, the share of children covered in the full population would probably be lower than 87%, since our sample does not include names with a frequency less than 60 .

Using equation (4), we can now list the name pairs that have the highest attractions, to see whether our results are plausible and already show some typical features. The top twenty name pairs with the highest attraction scores (limited to highly popular names with a frequency over 10,000) is presented in Table 2.

For the Dutch top twenty, it can be seen that Lars scores highest with Niels. The attraction tells us that the likelihood of finding a brother Niels with Lars is 4.59 times higher than the probability of finding the name Lars in general (within the group of parents that could consider Nordic names). There are also combinations of Niels or Lars with other Nordic names like Sven, Jesper, Bjorn, and Jorn, but these combinations fall outside the top twenty range. Apparently these parents prefer Nordic names for their children. From Table 2 we observe in the Dutch data already some likely clusters of three or more names, such as (Martijn, Jeroen, Sander, Jasper), (Bas, Tom, Tim, Bart, Daan, Koen), (Mike, Nick, Roy, Kim), and (Maria, Johannes, Johanna).

TABLE 2
THE 20 PAIRS OF POPULAR NAMES WITH HIGHEST ATTRACTION, BOTH IN THE NETHERLANDS (1982-2005) AND THE UK (1982-2002)

The frequency of each name is higher than 10,000

NL		UK	
name pair	attraction	name pair	attraction
Lars, Niels	4.59	Ben, Sam	8.12
Martijn, Jeroen	4.52	Edward, William	5.56
Bas, Tom	4.38	George, Harry	5.04
Maarten, Wouter	3.95	Elizabeth, Katherine	4.58
Martijn, Sander	3.46	Ross, Scott	4.64
Bas, Tim	3.25	Elizabeth, Catherine	4.60
Mike, Roy	3.22	Samuel, Benjamin	3.61
Daan, Koen	3.14	Samuel, Joseph	3.55
Mike, Nick	3.03	Mark, Paul	3.46
David, Ruben	3.01	Elizabeth, Victoria	3.34
Bram, Daan	3.00	Edward, George	3.28
Martijn, Jasper	2.91	Eleanor, George	3.23
Mark, Linda	2.88	Dean, Lee	3.19
Johannes, Maria	2.81	Alice, Emily	3.09
Roy, Kim	2.78	Alice, Edward	2.97
Bart, Koen	2.75	Jennifer, Katherine	2.95
Bart, Tom	2.74	Elizabeth, Edward	2.93
Jeffrey, Wesley	2.72	Craig, Scott	2.93
Patrick, Chantal	2.68	George, William	2.88
Johanna, Maria	2.67	Callum, Connor	2.80

No cluster-crossing combination like (Mike, Lars) is seen. This suggests that it may be possible to cluster names into groups based on parental preferences. The sets also immediately evoke associations to original language, length of the names (notably in very short names like Bas and Tom), and the time they were most popular (the traditional names as we have already seen with Maria, but also in the set with Martijn which names have passed their peak several years ago).

For the UK top twenty highly popular name pairs, the same type of observations can be made. Possible sets are (Edward, William, George, Harry, Victoria, Elizabeth, Eleanor, Alice, Emily, Katherine, Catherine), including quite a few royal names, the Scottish names (Scott, Ross, Craig) and the Hebrew names (Samuel, Benjamin, Joseph). Note that the attraction values for the UK do not differ considerably from those for the Netherlands.

If we put no limitation on the frequencies of names (other than set by our analysis method) the top twenty of name pairs is different and shown in Table 3.

The names in Table 3 are less common, but form very plausible pairs. For the Dutch top twenty, only Marjolein, Evelien, Annemiek, and Carolien are a set, but for

TABLE 3
THE 20 PAIRS OF NAMES WITH HIGHEST ATTRACTION, BOTH IN THE NETHERLANDS (1983-2005) AND THE UK (1982-2002)

NL		UK	
name pair	attraction	name pair	attraction
Oscar, Victor	9.50	Ffion, Lowri	34.25
Gijs, Teun	7.86	Nia, Aled	32.18
Allard, Ewoud	7.69	Aoife, Eoin	29.63
Noud, Ward	7.37	Ffion, Nia	29.00
Jill, Lynn	7.18	Bethan, Rhian	25.76
Jildou, Marrit	7.15	Jimmy, Tommy	24.97
Evelien, Marjolein	7.06	Lowri, Nia	24.77
Auke, Sietse	6.93	Aisling, Roisin	23.93
Carolien, Marjolein	6.91	Lowri, Tomos	23.11
Caitlin, Megan	6.91	Niamh, Orla	22.78
Joram, Tamar	6.86	Lowri, Aled	21.87
Björn, Sven	6.79	Dafydd, Sion	20.86
Eric, Marc	6.68	Cerys, Rhian	20.69
Jet, Pien	6.68	Ffion, Tomos	20.67
Esther, Judith	6.67	Roisin, Sinead	20.10
Lynn, Tess	6.60	Ceri, Nia	20.01
Jip, Puck	6.59	Albert, Arthur	19.90
Annemiek, Evelien	6.48	Eoin, Niall	19.84
Dave, Mike	6.25	Ciara, Orla	19.80
Gideon, Jonathan	6.25	Aine, Aiofe	19.45

the UK top twenty there are Welsh names in (Ffion, Lowri, Nia, Aled, Tomos, Ceri) and (Rhian, Bethan, Cerys), and Irish names in (Aoife, Eoin, Niall, Aine) and (Aisling, Roisin, Sinead). While the attraction of the Dutch pairs is only slightly higher than that for the popular name pairs presented in Table 2, for the UK name pairs the attraction is more than three times higher (also in comparison to the highest Dutch attraction scores). This may originate in an underestimation of the size of the subgroup of parents that may choose for such a name in the UK, as we did using formula (5). Alternatively, it might be that in the UK there are more indigenous names. For the Netherlands, highest values for the subgroup size were obtained for Laura and Mark with 54% and $5 \mathrm{I} \%$ of all parents. For the UK these were James and Emma with even 87% and 84%. The popular names with highest attraction (Table 2) typically relate to $30-50 \%$ of all parents for the Netherlands and $45-65 \%$ for the UK. The names in Table 3 belong to a smaller subgroup of parents, typically between $10-20 \%$ in both countries. However, this may be still a too high estimate in the UK case.

Clustering of names

The aim of this section is to identify name groups. Obviously, to combine names into name groups based on the values of their mutual attraction cannot be done by hand. The purpose of our clustering method is to separate groups of comparable names from others, so that names within one cluster are more similar than names of different clusters. Cluster analysis covers a wide array of statistical techniques used to group objects in homogeneous sub-groups on the basis of similarity (see Everitt et al., 200I). In principle, by using a clustering technique choices have to be made. The similarity between objects can be measured by the distance such as the squared Euclidean distance, by the correlation between objects or still another (dis)similarity criterion. In addition, the cluster method can be hierarchical or non-hierarchical, where a hierarchical method makes combinations in successive rounds (objects combined in the first rounds are more closely related than objects combined in subsequent rounds), whereas a non-hierarchical method is mostly an iterative technique, revising divisions until an optimum is reached. Finally, a clustering algorithm has to be chosen. A cluster algorithm can be seen as an amalgamation rule which determines when two clusters are sufficiently close to be combined. At the start, each object is considered its own cluster, but in successive rounds, clusters are formed. One such algorithm that we will use in the first step of our analysis (see below) is known as Single-linkage or Nearest neighbour, which combines two clusters when any two objects in the two clusters are closer together than to any other object not in these two clusters. To make the picture complete, a fundamental and unresolved problem in cluster analysis is that there are no rules for the choice of the optimal number of clusters. In principle, the number of clusters can vary from I to the total number of objects.

In what follows, we will explain our preferred cluster technique, motivated by both practical and conceptual considerations. At the practical level, we have to cope with the problem that a large number of objects (I409 names for the Netherlands, 9 II for
the UK) have to be entered in the clustering process, which rules out any standard cluster method due to computational constraints. As said, by concentrating on the highest observed attractions, in the first step we use a variant of the Single-linkage algorithm to arrive at an initial clustering, where the number of clusters is determined endogenously. After this first step, the availability of the attraction scores between two names also allow us to compute the attraction between a name and an initial cluster, or the attraction between two clusters.

Initial clustering

The first step in our procedure is to organize an initial, self-organizing clustering on the basis of descending attractions. For this, we order all name pairs according to their attraction from high to low, while for each pair - starting with the pair with highest attraction - we take the following decisions:
I. If both names are not yet assigned to a cluster, they constitute a new cluster
2. If one of the names has been assigned already to one cluster and the other name is new, the latter is assigned to the same cluster
3. If both names already were assigned to some cluster, either the same or different ones, no further action is taken.

This procedure results in a moderate clustering of names. For the Dutch data the 1409 names are combined in 302 clusters, while for the UK data the 912 names are combined in 160 clusters. These initial results are not yet optimal, however, since the start of a new cluster is very much dependent on the (accidental) order of attractions. That is, if two pairs of names (John, Mary) and (William, Albert) exist, each with high attraction, while the bridging attractions (John, William), (John, Albert), (Mary, William) or (Mary, Albert) do not reach that high, initially two clusters will be generated, one around John and Mary and one around William and Albert. But if all information could be taken together, it may be that a single cluster of these names would provide a better description of the data.

Initial clusters reconsidered

In the second phase we reconsider the initial clusters. For this, we focus on the attraction between a cluster and a target name. This attraction tells us how more likely it is to find for some target name the names for brothers and sisters in a cluster, than to find them in general in the population. With this knowledge we can find the cluster that has the highest attraction to some target name. That may be the cluster the name is already in, but it may be another cluster as well. If the latter is the case, we reassign the name to that cluster.

The attraction between a cluster and some target name is simply the sum of the attractions of all names in the cluster and the target name. As an example, if the name under consideration is Mary, and John and William are in one cluster already, we sum A_{c} (Mary, William) and $\mathrm{A}_{\mathrm{c}}($ Mary, John $)$ as the attraction of the cluster (John, William) to Mary. Or, in general terms, the attraction A of cluster K to the name Mary is

$$
\begin{equation*}
A\left(\text { Mary }^{\prime}, \text { cluster }_{K}\right)=\sum_{i \in K} A_{c}\left(\text { Mary }^{\prime} \text { name }_{i}\right) \tag{6}
\end{equation*}
$$

After having reassigned the names to the clusters which exert the highest attraction - when necessary - their distribution over clusters may have changed, and the procedure has to be repeated. In this iterative process, the number of clusters gradually decreases since some clusters lose all their names, but the process converges after several iterations.

Unfortunately, it shows that a straightforward summation of attractions does not work well. For the UK, all Western names gather in one big cluster, while names from other ethnic and religious origin join in some much smaller clusters. For the Dutch data, the result is more diverse, but still unbalanced with a few big and many small clusters. The reason is that the attraction between a limited number of typical or idiosyncratic names is not high enough to stand the collective (individually much lower) attraction of many other atypical names in big clusters. The optimization problem of the second phase consists of making the best use of strong connections of name pairs, while neutralizing the aggregate effect of many weak connections of popular names with other names in the cluster outcomes. To achieve this, we put much more emphasis on closely related names by applying an exponential weighting of the attraction by a so-called Minkowski coefficient m . The attraction by cluster K on some name then is

$$
\begin{equation*}
A\left(\text { name }^{\text {cluster }}{ }_{K}\right)=\left\{\sum _ { i \in K } A _ { c } \left({\text { name } \left.\left., \text { name }_{i}\right)^{m}\right\}^{\mathrm{I} / m}}^{m}\right.\right. \tag{7}
\end{equation*}
$$

For both the Dutch set, with initially 302 clusters, and the UK set, with initially i60 clusters, the final number of clusters as a function of the Minkowski coefficient m is shown in Figure 1.

FIGURE 1 Number of name clusters as a function of weighting with Minkowski coefficient m, for both Dutch and UK data

For high values of the Minkowski coefficient m, the number of clusters approaches the number of clusters in the initial phase (302 for the Dutch data, 160 for the UK data), because then only the nearest neighbours of a name will have an influence on the result. Recall that in the initial clustering phase only the single nearest neighbour was in play. As mentioned before, a straightforward summation of all attractions (equivalent with $\mathrm{m}=\mathrm{r}$) will reduce the number of clusters to a minimum, but with an unbalanced outcome.

Obviously there is some optimum value of m for which clusters convey a maximum amount of information while not generating too much irrelevant detail. For this value of m there is no recipe, however, because it depends on specific properties of the data. The best m gives enough granularity in clusters (no big cluster that takes all), while expected clusters like regional names or Hebrew names, show up. For the Dutch data this was the case for $\mathrm{m}=2.5$ (I 64 clusters), for the UK data for $\mathrm{m}=3.5$ (I44 clusters).

The resulting clusters are shown in Tables 4 and 5. But before discussing these, we still have one step to make, because the number of clusters is still quite high.

Grand clusters

So far, our analysis was concerned with the relationship between a name and another name, or between a name and a cluster of names. This approach is based on the assumption that parents choose names for all their children from a single cluster of names. However, parents that have affinity to some typical group of names may also like related names from neighbouring clusters. If certain Dutch parents prefer some cluster of Frisian names for their children, they may also like other clusters of Frisian names or certain types of traditional Dutch names, while disliking English names and not even thinking of Arabic names. The result is that, among this group of parents, some will choose names for all their children from that specific Frisian name set, but other parents may choose only one name from it and another name out of other Frisian names or traditional Dutch names. Therefore, after having looked for parents that choose names for all their children from a single name cluster, we may widen our view and look for parents that share a similar pattern of preferences among the entire spectrum of name clusters we have distinguished already.

The relationship between name clusters can be quantified by the computation of the attraction that clusters exerts on each other. Analogous to formula (7) but with an extension, formula (8) gives the attraction of clusters vis-à-vis each other. For the computation of the attraction of cluster G on cluster K , we compute the attraction of cluster K on each individual name in G, take the sum over all names in G, and normalize the result for the number of names involved. It shows that optimal results are obtained if we use the maximum of the number of names in cluster K or G for the latter. The attraction between clusters G and K is then (symmetrically) defined as:

$$
\begin{equation*}
A\left(\text { cluster }_{G}, \text { cluster }_{K}\right)=\left[\frac{\sum_{j \in G} \sum_{i \in K} A_{c}\left(\text { name }_{i}, \text { name }_{j}\right)^{m}}{\max \left(N_{G}, N_{K}\right)}\right]^{\mathrm{T} / m} \tag{8}
\end{equation*}
$$

On this basis, we can compute the attraction that all name clusters exert on each other. The result is a cluster attraction matrix of $164 * 164$ values for the Dutch data and I44 * I 44 values for the UK data in which we can search for common attraction patterns. We use factor analysis for this (see e.g. Gorsuch, 1983), and apply varimax rotation to find patterns on which the loading (L) of individual name clusters is maximized. For both the Dutch and UK data we set a limit to 25 independent patterns, which together explained 48.7% and 63.4% of total variance in the attraction values, respectively. Each of the 164 (NL) and I44 (UK) name clusters has the highest loading on a particular pattern, and they are grouped accordingly in grand clusters. Maximum loadings are typically higher than $\mathrm{L}=0.5$. In a few cases the loading was scattered over many patterns. The name cluster was then still associated to the best fitting grand cluster, or a number of name clusters were taken together in a separate, weakly classified grand cluster. In all, we distinguished 34 grand clusters for the Netherlands and 28 for the United Kingdom.

The final results are presented in Table 4 for the Netherlands and in Table 5 for the United Kingdom. The tables are enriched with general information on the grand name group, and include a short description that helps to identify the properties. This description can be based on the dominant language, the overall length of the names, or another striking feature, possibly including the dominant gender. Besides the total number of children in a name group, we also distinguished two periods of birth, 1985-1989 and 2000-2005 (NL) or 2000-2002 (UK), for which we give the percentage of coverage. This makes it possible to identify trends in the general popularity of a name in a name group, although some individual names may deviate from the change in popularity of the name group to which it belongs. The order of presentation is governed by these trends. Per country, we start with grand name groups that are in decline, followed by those which represent upcoming names. We conclude with non-Western name groups.

As we look to the first grand cluster for the Netherlands in Table 4 as an example, we observe traditional names in Latin form, as usually used by the Catholic part of the population. This group consists of 69 names, and declined between about 1987 and 2003 from 5.6 to 2.2% of all children. Names are equally distributed among boys and girls. The grand cluster is composed of four finer name groups, JOHANNES, MARCUS, REGINA, and JOACHIM, of which JOHANNES stands out. Their loading (L) on the grand cluster is strongest for the groups JOHANNES and MARCUS (0.7 and 0.8). The estimate of their total subgroup size (R), i.e. the share of the parents that might consider a name from this group, is 31% for the group JOHANNES, and drops to only 4% for the group JOACHIM. Subsequently, Table 4 lists the important names of this grand cluster, with name, gender, and frequency (N) in the whole period 1982-2005. The order is by fine name group and frequency. In the same way, all grand clusters are presented, in Table 4 for the Netherlands and in Table 5 for the UK.

Note that the emerging groups and clusters are entirely defined by a statistical analysis, and therefore can be heterogeneous due to accidental properties of the data. This may especially be relevant for the names with lower frequencies. Nevertheless, the result seems surprisingly plausible for both countries, which adds to the general validity of the approach.

TABLE 4

DUTCH FIRST NAMES (1982-2005), SPECIFIED PER GRAND CLUSTER, BASED ON PARENTAL PREFERENCES

Per grand cluster the total number of names and children involved is given, the percentages of boys and girls within the group, the percentage of children with a name from the group around 1987 and around 2002. Then follow summary data of the name clusters involved in the pattern (each indicated by the most frequent name, in italics); per name cluster the loading L on the pattern ($L=1.0$ is complete; a loading less then 0.3 is not given), the mean of the estimated relative size R of the subgroup ($R=100 \%$ would be all children), and the total number of children (N) are presented. Grouped by name cluster, first names are presented, their gender and the total number of children. The presentation of names is limited to those with at least 500 name bearers, or those beared by more than 1000 children when the number of names in a cluster is higher than 10 . The groups are divided in (1) names in decline, (2) upcoming names, and (3) non-Western names

NAMES IN DECLINE
 TRADITIONAL NAMES

Latin form

69 names - 187,133 children
49% male - 51% female
5.6\% 1987 > 2.2\% 2003

Names that were traditionally predominantly given in the Catholic southern part of the country. Seriously in decline for fifty years. Johannes and Maria were the most popular names until 1989 and 1990, respectively.

respectively.				Michaël Albertus	$\begin{aligned} & \mathrm{m} \\ & \mathrm{~m} \end{aligned}$	$\begin{aligned} & 1595 \\ & 1589 \end{aligned}$
	L	R(\%)	N			
JOHANNES	0.7	30	168,527	Henricus	m	1407
MARCUS	0.8	13	14,167	Bernardus	m	1401
REGINA	0.5	6	3092	Francisca	f	1242
JOACHIM	0.3	4	1347	Leonardus	m	1105
Johannes		m	23,819	Gabriëlle	f	1091
Maria		f	21,067	Marius	m	1069
Johanna		f	16,437	Marcus	m	2224
Anna		f	16,273	Paulus	m	1852
Elisabeth		f	9773	Robertus	m	1553
Catharina		f	4828	Andreas	m	1241
Petrus		m	4742	Bartholomeus	m	1128
Jacobus		m	4690	Stefanus	m	936
Martinus		m	4552	Markus	m	916
Wilhelmina		f	4076	Susanna	f	883
Adrianus		m	3817	Carolina	f	863
Nicolaas		m	3813	Jozef	m	820
Antonius		m	3220	Regina	f	667
Hendrikus		m	3168	Laurentius	m	592

TABLE 4 (Continued)

Theresia		f	558	Jacoba	f	2908
Joachim		m	528	Geert	m	2904
TRADITIONAL NAMES				Janna	f	2836
				Leendert	m	2650
Dutch form						
128 names - 248,803 children				Berend	m	2639
69\% male - 31\% female				Frederik	m	2517
6.7\% 1987 > 3.5\% 2003				Roelof	m	2423
				Evert	m	2414
Names that were traditionally predominantly given by the non-Catholic population. Serious in decline for fifty years. It is of interest that more boys than girls are still given a name from this group which is possibly due to more naming after the grandfather(s) in original spelling than for girls.				Gerard	m	2407
				Gerben	m	2077
				Aaltje	f	2034
				Abraham	m	2009
	L	R(\%)	N	Geertje	f	2008
JAN	0.4	24	241,869	Neeltje	f	2003
JANTINE	0.6	6	2140	Teunis	m	1902
BAREND	0.7	6	1566	Arend	m	1821
OTTO	0.7	4	1217	Giisbert	m	1767
WILLEMPJE	0.6	3	1061	Herman	m	1767
CARINA	0.4	7	950	Grietje	f	1704
				Geertruida	f	1697
Jan		m	19,975	Jannetje	f	1627
Willem		m	13,232	Marina	f	1619
Hendrik		m	12,322	Anne	m	1571
Cornelis		m	12,299	Frans	m	1562
Pieter		m	12,032	Dirkje	f	1464
Gerrit		m	8342	Harmen	m	1459
Dirk		m	7382	Antje	f	1361
Cornelia		f	7115	Alida	f	1358
Jacob		m	6545	Martina	f	1353
Johan		m	5714	Aart	m	1346
Marinus		m	5585	Hendrikje	f	1344
Adriana		f	4922	Willemina	f	1339
Hendrika		f	4148	Derk	m	1263
Albert		m	3657	Andries	m	1232
Elizabeth		f	3547	Pieternella	f	1228
Arie		m	3399	Lena	f	1189
Klaas		m	3106	Dina	f	1172
Harm		m	3070	Trijntje	f	1165
Adriaan		m	3063	Karel	m	1116

TABLE 4 (Continued)

Gerritje		f	1058	Friso		m	795
Jantje		f	1053	Ewout		m	670
Henk		m	1049	ELITE NAMES 2			
Egbert		m	1027				
Jantine		f	700	11 names - 33,122 children			
Henri		m	535	78\% male - 22\% female			
Aline		f	534	0.9\% 1987 > 0.4\% 2003			
Barend		m	795	Another group of international names in decline with an elite connotation.			
Annigje $\quad 511$ f							
Carina		f	548		L	R(\%)	N
				ALEXANDER	0.5	39	22,716
ELITE NAMES 1				ALEXANDRA	0.3	14	3052
19 names - 13,662 children				BARBARA	0.7	18	2585
54\% male - 46\% female				NORA	0.6	7	2504
0.3\% 1987 > 0.2\% 2003				RUDOLF	0.2	12	2265
The names in this group associate to the elite. They are quite long and include some typical Dutch and French names. They are somewhat in decline.				Alexander		m	8352
				Sebastiaan		m	8198
	L	R(\%)	N	Christiaan		m	6166
RODERICK	0.5	7	4934	Alexandra		f	2235
LISELOTTE	0.6	9	2982	Victoria		f	817
EMILIE	0.6	4	2260	Barbara		f	1859
MAXIMILIAAN	0.6	7	2021	Caspar		m	726
FRISO	0.6	7	1465	Nora		f	1685
Roderick		m	1012	Sofia		f	819
Ferdinand		m	971	Rudolf		m	1288
Boudewijn		m	916			m	977
Magdalena		f	706	MIXED NAMES 1			
Bernadette		f	525	23 names - 17,046 children			
Liselotte		f	1171	64\% male - 36\% female			
Rozemarijn		f	1044	0.4\% 1987 > 0.3\% 2003			
Annemijn		f	767	A small group of names, perhaps with some elite flavour. The cluster INGEBORG includes Nordic names			
Emilie		f	655				
Frédérique		f	572		L	R(\%)	N
Philippe		m	518	LUKAS	0.5	15	4013
Etienne		m	515	INGEBORG	0.4	9	3985
Maximiliaan		m	939	LENNARD	0.7	10	3353
Justus		m	560	ANTONIE	0.6	8	2445
Constantijn		m	522	JOANNE	0.5	10	2373

TABLE 4 (Continued)

JURIAN	0.3	5	877	Ilse	f	9193
Lukas		m	1759	Frank	m	9124
Kasper		m	1537	Peter	m	9117
Jurriaan		m	717	Erik	m	8214
		,	1116	Paul	m	7316
		f	1116			
Sigrid		f	727	Inge	f	6482
Arne		m	701	Rob	m	6118
Kristian		m	571	Sandra	f	5861
Roald		m	501	Saskia	f	5156
Lennard		m	1035	Ellen	f	5083
Arnoud		m	838	Yvonne	f	4317
Madeleine		f	531	Martin	m	4159
Antonie		m	872	René	m	4110
Machiel		m	590	Irene	f	3579
Aleida		f	566	Karin	f	3455
Joanne		f	1306	Ruud	m	3229
Corine		f	607	Alex	m	3193
				Susan	f	2615
INTERNATIONAL \& DUTCH NAMES premodern				Petra	f	2485
				Astrid	f	2444
92 names - 250,732 children				Ingrid	f	2308
41\% male - 59\% female				John	m	2301
8.0\% 1987 > 2.4\% 2003				Anke	f	2238
The clusters in this group are in serious decline and have had their most popular years in the seventies or earlier. The big cluster LAURA shows many internationally used names (Laura was the most popular girls name in 1991, 1994-1997), while the other clusters predominantly include Dutch names.				Jolanda	f	2185
				Elisa	f	2119
				Anita	f	1999
				Jos	m	1990
	L	R(\%)	N	Sylvia	f	1823
LAURA	0.6	34	218,569		f	761
MARIEKE	0.7	31	14,463	Moniek	f	1708
MARIIKE	0.7	16	8970	Ben	m	1570
				Paula	f	1561
HANS	0.7	16	4397	Kristel	f	1535
HILDE	0.6	17	2460	Nico	m	1501
ELSKE	0.6	5	1873	Nico	m	1501
Laura		f	20,225	Tanja	f	1356
Mark		m	18,413	Karen	f	1285
Linda		f	13,414	Paulien	f	1222
Robert		m	11,003	André	m	1160

TABLE 4 (Continued)

José		f	1113	Wouter	m	13,869
Mario		m	1083	Jasper	m	12,574
Anja		f	1010	Maarten	m	11,988
Marieke		f	7750	Suzanne	f	9442
Janneke		f	4440	Eline	f	9353
Hanneke		f	1568	Lisanne	f	7986
Marjan		f	705	Matthijs	m	7106
Marijke		f	2862	Simone	f	6897
Anneke		f	1588	Joris	m	6653
Tineke		f	820	Marloes	f	6383
Perry		m	721	Steven	m	6068
Ineke		f	688	Marjolein	f	6058
Gert-lan		m	684	Michiel	m	5975
Annette		f	622	Rianne	f	5677
Devin		m	620	Bastiaan	m	5067
Hans		m	2197	Leonie	f	4784
Bert		m	782	Marleen	f	4415
Wim		m	598	Wessel	m	4366
Hilde		f	1876	Mathijs	m	4205
Else		f	584	Elise	f	4140
Elske		f	619	Evelien	f	4077
Theo		m	517	Rutger	m	4071
DUTCH NA				Robbert	m	3975
premoder	MAS			Menno	m	3955
87 names	81 c			Marije	f	3928
58\% male	femal			Lisette	f	3774
8.3\% 1987	\% 200			Jochem	m	3644
The big cluster THOMAS is presented separately but has spread loadings to both premodern names and Dutch modern names. The name Thomas itself was the most popular boys name in 1995-1998, 20002003 and formed a kind of a bridge between premodern and modern names. Most other names had their peak period (much) earlier.				Susanne	f	3576
				Lianne	f	3548
				Marijn	m	3507
				Karlijn	f	3029
				Rosanne	f	2846
	L	R(\%)	N	Mariëlle	f	2767
THOMAS	0.5	34	343,881	Mariëlle Martine	f f	2686 2608
Thomas		m	25,933	Carlijn	f	2568
Jeroen		m	21,125	Emiel	m	2448
Sander		m	16,205	Janine	f	2339
Martijn		m	16,192	Caroline	f	2289

TABLE 4 (Continued)

Tijmen	m	2272	Ronnie		m	954
Marianne	f	2268	Dennie		m	541
Thijmen	m	2266	ENGLISH NAMES			
Aniek	f	2123				
Willemijn	f	2115	premodern			
Lennart	m	2068	231 names - 759,960 children			
Pauline	f	2008	51\% male - 49\% female			
Annemarie	f	1953	18.0\% 1987 > 11.5\% 2003			
Rogier	m	1927	The big cluster KEVIN largely exists of English names but also includes some Roman names. Kevin itself			
Marissa	f	1925				
Mirthe	f	1835	was the most popular name from 1990-1994, but many other names from this cluster attained a high frequency as well. Currently most names are in decline.			
Maureen	f	1795				
Marlies	f	1758	L			
Jolien	f	1740			R(\%)	N
Marnix	m	1664	KEVIN	0.5	27	759,960
Merijn	m	1570	Kevin		m	22,586
Jurgen	m	1562	Dennis		m	18,965
Annemiek	f	1505	Robin		m	16,904
Annemieke	f	1495				
Anton	m	1377	Michael		m	14,699
Annelies	f	1326	Stefan		m	14,565
Anniek	f	1321	Jeffrey		m	13,281
Dorien	f	1307	Michelle		f	13,174
Margot	f	1298	Patrick		m	12,976
Roland	m	1291	Danny		m	11,334
Carolien	f	1255	Wesley		m	11,226
Jeanine	f	1231	Melissa		f	11,196
Heleen	f	1224	Chantal		f	11,000
Annabel	f	1217	Daniëlle		f	9948
DUTCH NAMES			Naomi		f	9915
unclassified premodern			Denise		f	9546
4 names - 9,953 children			Vincent		m	9451
100\% male - 0\% female			Jordy		m	9375
0.3\% 1987 > 0.1\% 2003			Romy		f	9116
			Joey		m	8919
	R(\%)	N	Daphne		f	8363
MARC	31	8458	Sharon		f	8132
RONNIE	9	1495	Samantha		f	8029
Marc	m	5667	Jessica		f	8021
Eric	m	2791	Wendy		f	7988

TABLE 4 (Continued)

Richard	m	7878	Ramon	m	3834
Remco	m	7833	Bryan	m	3828
Demi	f	7782	Christian	m	3757
Nicole	f	7343	Damian	m	3692
Dylan	m	7314	Esmée	f	3683
Justin	m	7077	Ryan	m	3679
Melanie	f	6957	Youri	m	3630
Stephanie	f	6837	Cynthia	f	3622
Marco	m	6794	Ashley	f	3582
Ricardo	m	6551	Edwin	m	3531
Michel	m	6397	Amanda	f	3531
Jennifer	f	6290	Larissa	f	3511
Nathalie	f	6290	Miranda	f	3468
Tamara	f	6197	Nadine	f	3358
Kimberley	f	6126	Quinten	m	3321
Brian	m	5400	Sabrina	f	3297
Danique	f	5305	Arjan	m	3280
Kimberly	f	5268	Yannick	m	3275
Priscilla	f	5206	Stefanie	f	3093
Julian	m	5185	Jeremy	m	2972
Sabine	f	5080	Raymond	m	2955
Mariska	f	5004	Guido	m	2890
Marcel	m	4968	Tristan	m	2859
Stephan	m	4702	Leroy	m	2856
Claudia	f	4657	Mitchel	m	2835
Bianca	f	4641	Marvin	m	2827
Ronald	m	4632	Shirley	f	2737
Melvin	m	4603	Angelique	f	2659
Pascal	m	4595	Natasja	f	2658
Patricia	f	4594	Brenda	f	2601
Mitchell	m	4559	Kyra	f	2507
Angela	f	4545	Jason	m	2488
Erwin	m	4544	Celine	f	2480
Leon	m	4220	Renate	f	2340
Maikel	m	4204	Joëlle	f	2338
Maurice	m	4106	Jamie	f	2333
llona	f	4075	Roxanne	f	2305
Monique	f	4021	Kayleigh	f	2291
Carmen	f	3861	Davey	m	2245

TABLE 4 (Continued)

Ralph	m	2225	Christel	f	1376
Nikita	f	2224	Monica	f	1375
Yvette	f	2193	Desiree	f	1365
Kaylee	f	2166	Jenny	f	1363
Jacqueline	f	2099	Ferry	m	1352
Tara	f	2063	Jaimy	f	1316
Anthony	m	2015	Dionne	f	1306
Anthony	m		Kenneth	m	1304
Natascha	f	2001	Carlo	m	1274
Randy	m	1961	Selina	f	1263
Nigel	m	1911	Marcella	f	1248
Andrea	f	1881	Rowena	f	1237
Diana	f	1872	Jerry	m	1228
Rowan	m	1866	Calvin	m	1225
Quinty	f	1811	Manuela	f	1224
Debbie	f	1800	Carola	f	1217
Shannon	f	1737	Sascha	f	1177
Sylvana	f	1734	Céline	f	1176
Vivian	f	1708	Arno	m	1168
Tycho	m	1699	Wilco	m	1119
Tycho	m	1699	Jack	m	1115
Madelon	f	1642	Veronique	f	1113
Xander	m	1625	Alyssa	f	1107
Remy	m	1624	Brigite	f	1089
Jamie	m	1620	Lesley	m	1079
Esmeralda	f	1619	Kenny	m	1078
Raoul	m	1581	Kelsey	f	1073
Brandon	m	1526	Danielle	f	1063
Lindsey	f	1522	Desirée	f	1049
Sharona	f	1508	Shanna	f	1031
Jaimy	m	1497	Elvira	f	1028
	,		Lauren	f	1018
Kelvin	m	1486	Arnold	m	1004
Charissa	f	1478			
Ramona	f	1463	ENGLISH NAMES		
Robbin	m	1455	royal names		
Manouk	f	1454	3 names - 2966 children		
Lindsay	f	1439	100\% male - 0\% female		
Dominique	m	1421	0.1\% 1987 > 0.0\% 2003		
Sebastian	m	1410		R(\%)	N
Babette	f	1397	WILLIAM	13	2966

TABLE 4 (Continued)

William		m	1705	Johnny		m	1331
James		m	696	Benny		m	514
Harry		m	565	Sidney		m	753
ENGLISH NAMES				MIXED NAMES 2			
y-suffix				5 names - 2408 children			
33 names - 61,863 children				51\% male - 49\% female			
43\% male - 57\% female				0.1\% 1987 > 0.0\% 2003			
1.8\% 1987 > 0.6\% 2003					L	R(\%)	N
These clusters include English names with the -y suffix. Just like the cluster KEVIN they are in decline.				REMKO	0.4	6	1422
	L	R(\%)	N		0.3	7	986
KELLY	0.5	23	47,066	Remko		m	620
IIMMY	0.6	15	9365	Remi		m	598
QUINCY	0.6	4	2396				
JOHNNY	0.4	11	1845	UPCOMING NAMES			
SIDNEY	0.6	3	1191	FRISIAN NAMES			
				67 names - 100,871 children			
Kelly		f	9359	40\% male - 60\% female			
Mandy		f	8189	1.8\% 1987 < 2.5\% 2003			
Nicky		m	4666	This group including names that originate from the			
Daisy		f	4177				
Cindy		f	3745	especially names in the cluster FEMKE have gained nationwide popularity and are responsible for the growth of this group.			
Davy		m	2310				
Nancy		f	2185	L		R(\%)	N
Ricky		m	1678	FEMKE	0.7		40,518
Andy		m	1510			34	
Barry		m	1441	JELMER	0.7	13	24,087
Donny		m	1424	DOUWE	0.8	8	10,824
Debby		f	1289	HIDDE	0.7	9	8202
Patty		f	1097	NOORTJE	0.5	14	6432
Jimmy		m	3332	FAMKE	0.8	7	3674
Tommy		m	1578	WIETSKE	0.7	7	2536
Lizzy		f	1234	SIETSKE	0.6	9	1921
Gaby		f	990	JOUKE	0.6	4	1670
Bobby		m	817			2	1007
Sonny		m	783	Femke		f	10,535
Francis		f	631	Jelle		m	9940
Quincy		m	1389	Maaike		f	8804
Shanice		f	569	Nienke		f	7574

TABLE 4 (Continued)

TABLE 4 (Continued)

Noah Levi Nathan	mm	$\begin{aligned} & 3240 \\ & 2614 \end{aligned}$	the cluster CHARLOTTE has female French names, the cluster FLORIS has old noble Dutch male names, while the cluster CASPER has these with a more international flavor.			
	m	2046				
Aron	m	1726		L	R(\%)	N
Aaron	m	1307	AMBER	0.6	24	51,499
Jonas	m	1101	EMMA	0.7	31	41,088
Ayla	f	814	CHARLOTTE	0.5	23	27,980
Tamar	f	777	FLORIS	0.7	21	19,536
Chloë	f	762	CASPER	0.5	22	14,851
Joram	m	589	OLIVIER			
Joshua	m	3335		0.6	8	9227
Timothy	m	3107	FABIAN	0.6	15	7608
			ROSALIE	0.7	20	7593
Matthias	m	1575	ROELAND	0.3	9	5646
Christopher	m	1513	MADELIEF	0.4	7	2043
Matthew	m	1231				
Talitha	f	926	Amber		f	10,271
Andrew	m	816	Fleur		f	9205
Elena	f	813	Merel		f	8454
Samuël	m	674	Myrthe		f	4857
Gregory	m	673	Esmee		f	4128
Rachel	f	4077	Jasmijn		f	3559
Deborah	f	3451	Sterre		f	3045
Rebecca	f	3408	Veerle		f	2762
Debora	f	842	Claire		f	2073
Joël	m	2937	Jade		f	1604
Thirza	f	979	Linde		f	1541
Micha	m	809	Emma		f	9992
Esmé	f	507	Julia		f	9475
Boaz	m	846	Sophie		f	8893
Tirza	f	688	Sarah		f	7102
Yoran	m	661	Rosa		f	3370
Ezra	m	651	Sophia		f	2256
Noah	f	557	Charlotte		f	9874
Hannah	f	2968	Isabelle		f	3103
ELITE NAM			Louise		f	2446
70 names -			Valerie		f	2077
30\% male -			Emily		f	1880
2.4\% 1987			Josephine		f	1333
Names in this group have a typical elite flavor. The cluster AMBER has female names originating in nature			Juliette		f	1258
			Christine		f	1209

TABLE 4 (Continued)

Fabienne	f	1114	DUTCH NAMES		
Frederique	f	928	modern		
Floris	m	5828	158 names - 575,780 children		
Laurens	m	5066	60\% male - 40\% female		
Pepijn	m	2990	8.0\% 1987 < 16.2\% 2003		
Maurits	m	2375	Dutch modern names are short (abbreviated), seldom more than five letters, for boys in many cases just one syllable. Lisa was the most popular name for girls in 1992, Iris in 1993, and Sanne from 1998-2006, Tim for boys in 1996 and 1999. Many high-ranked names are still in the top twenty. The cluster has weak relations to the English names in the cluster KEVIN, which were most popular in the years before.		
Philip	m	1657			
Reinier	m	1620			
Casper	m	4589			
Hugo	m	3105			
Victor	m	2796			
Arthur	m	1841	L	R(\%)	N
Oscar	m	1839	TIM 0.4	29	575,780
Edward	m	681	Tim	m	22,915
Olivier	m	2458	Sanne	f	21,600
Julius	m	1319	Anne	f	19,853
Diederik	m	1182	Lisa	f	16,874
Valentijn	m	994	Tom	m	16,630
Roosmarijn	f	660	Rick	m	16,541
Leander	m	572	Iris	f	16,373
Lodewijk	m	553	Bart	m	15,996
Olga	f	544	Daan	m	14,672
Nicolas	m	515	Eva	f	13,228
Fabian	m	3217	Bas	m	12,690
Tobias	m	2582	Max	m	12,485
Florian	m	1334	Bram	m	12,455
Rosalie	f	3081	Lotte	f	12,129
Isabel	f	2782	Koen	m	11,709
Isabella	f	1730	Thijs	m	11,511
Roeland	m	1043	Tessa	f	10,861
Jacco	m	955	Jesse	m	10,239
Ernst	m	704	Joost	m	8665
Allard	m	688	Luuk	m	8573
Folkert	m	598	Stijn	m	8512
Eleonora	f	588	Nina	f	7881
Alissa	f	568	Lieke	f	7291
Ewoud	m	502	Sjoerd	m	6897
Madelief	f	1069	Vera	f	6777
Merlijn	m	974	Gijs	m	6615

TABLE 4 (Continued)

Sam	m	6136	Boris	m	1980
Maud	f	5924	Imke	f	1948
Pim	m	5834	Sam	f	1874
Stan	m	5808	Pien	f	1873
Rik	m	5672	Jaap	m	1868
Floor	f	5618	Silke	f	1867
Sem	m	5434	Ties	m	1693
Niek	m	5427	Dana	f	1632
Roos	f	5278	Jessie	f	1629
Sara	f	5186	Wout	m	1605
Maartje	f	5140	Noor	f	1583
Roel	m	4688	Evi	f	1552
Isa	f	4636	Liza	f	1504
Bob	m	4462	Elke	f	1475
Rens	m	4359	Jort	m	1457
Luc	m	4321	Floortje	f	1443
Joep	m	4236	Nils	m	1435
Teun	m	4196	Lex	m	1399
Job	m	4156	Mieke	f	1399
Loes	f	3810	Mara	f	1367
Bo	f	3493	Tomas	m	1356
Stef	m	3375	Janne	f	1342
Jens	m	3091	Kees	m	1333
Chris	m	3085	Jip	m	1329
Cas	m	3054	Chiel	m	1323
Ivo	m	3008	Malou	f	1317
Twan	m	2965	Marlou	f	1268
Mees	m	2902	Jop	m	1233
Meike	f	2900	Ruby	f	1222
Thom	m	2838	Jet	f	1221
Guus	m	2594	Sil	m	1192
Jorn	m	2585	Pleun	f	1182
Coen	m	2511	Felix	m	1157
Sjors	m	2477	Marijn	f	1150
Sofie	f	2359	Maik	m	1108
Tijn	m	2172	Tijs	m	1107
Mart	m	2104	Kaj	m	1062
Julie	f	2083	Sacha	f	1062
Freek	m	2082	Brent	m	1048

TABLE 4 (Continued)

TABLE 4 (Continued)

FABIËNNE	0.8	10	4527	Beau	f	1349	
STÉPHANIE	0.6	8	3154	Emile	m	766	
DIMITRI	0.3	8	1773	Alain	m	722	
Maxime		f	2720	Mathieu	m	624	
Aimée		f	846	Guy	m	610	
Thierry		m	781	Julien	m	590	
				572			
Noël			m		691	Yves	m
Dominique		f	4194	Valérie	f	556	
Pascalle				Jules	m	1455	
		f	773	Louis	m	953	
Fabiënne		f	1527	Camiel	m	778	
Rachelle		f	1410				
Juliëtte		f	1031	Inez	f	681	
Florine		f	559	Maxim	m	1087	
Stéphanie				Beau	m	966	
		f	942	Roman	m	523	
Geoffrey		m	632			1409	
Xavier		m	630				
Mylène		f	512	Jean	m	731	
Dimitri		m	1043	Anique	f	618	
Dominic		m	730	MIXED NAMES			
FRENCH NAMES				short			
short				18 names - 17,557 children			
26 names - 33,234 children				50\% male - 50\% female			

$0.6 \% 1987<0.8 \% 2003$
Another group of clusters with French names, including the somewhat shorter names.

	L	R(\%)	N		L	R(\%)	N
ROBIN	0.4	26	16,368	BENTE	0.5	10	8549
BEAU	0.6	6	6765	IVAN	0.5	8	4642
JULES	0.8	10	3867	ABEL	0.5	6	2379
MAXIM	0.5	5	2576	LISE	0.6	9	1987
MARIE	0.5	12	2140	Bente		f	2980
ANIQUE	0.6	6	1518	Mats		m	1998
Robin		f	5511	Mirte		f	1419
Nikki		f	5385	Merle		f	1297
Renée		f	3227	Sten		m	855
Nicky		f	2245	Ivan		m	1046

TABLE 4 (Continued)

Rolf	m	827
Rudy	m	713
Carla	f	622
Frits	m	523
Kitty	f	505
Abel	m	849
Ward	m	813
Noud	m	717
Lise	f	930
Hanne	f	580

Ivar	m	1237
Dagmar	f	1237
Lilian	f	1094
Birgit	f	895
Joran	m	1197
Leanne	f	816
Alwin	m	735
Duco	m	589
Yorick	m	1203
Ingmar	m	698

MODERN NAMES 1

11 names - 14,964 children
23\% male - 77\% female
$0.1 \% 1987<0.6 \% 2003$
A mixture of modern short names, predominantly female, are found in this group. Jip is typical Dutch (and unisex).

	L	R(\%)	N
PUCK	0.5	11	5161
MIKA	0.4	7	3190
DONNA	0.8	10	2668
ADAM	0.5	5	2035
SELMA	0.1	7	1910
Puck		f	2273
Kiki	f	2190	
lip	f	698	
Mika	m	1643	
Senna	f	1547	
Donna	f	1499	
Gina	f	1169	
Adam	f	1166	
Lina	f	869	
Selma	m	1233	
Ferdi		677	
M0DERN NAMES 2			
29 names - 58,573 children			
53\% male - 47\% female			
0.4\% 1987 < 2.6\% 2003			

TABLE 4 (Continued)

This group also includes modern names, with a variety of backgrounds.				ITALIAN \& SPANISH NAMES 30 names - 30,345 children 64\% male - 36\% female			
	L	R(\%)	N				
MILAN	0.8	14	13,610	0.4\% 1987 < 0.8\% 2003			
LARA	0.7	13	9400	Italian names dominate this group, but it shows also Juan and Diego.			
JARNO	0.5	15	8890				
ZOË	0.7	16	8772		L	R(\%)	N
LOİS	0.6	8	6747	LORENZO	0.7	7	9183
DION	0.5	11	5277				
LUCA	0.5	8	3925	SORAYA	0.5	6	4938
NOËLLE	0.5	10	1952	GINO	0.7	8	4238
				ALICIA	0.5	8	4071
Milan		m	4659	DIEGO	0.6	3	2582
Jordi		m	4224	SERENA	0.2	7	2309
Luna		f	2507	GABRIËLIA	0.1	7	1846
Dani		m	1501	GIANNI	0.5	2	1178
Stella		f	719				
Lara		f	3199	Lorenzo		m	2999
Indy		f	1982	Giovanni		m	2454
Yara		f	1741	Delano		m	1298
Mila		f	1445	Romano		m	1154
Isis		f	1033	Celina		f	698
Jarno		m	2956	Marciano		m	580
Dewi		f	1865	Soraya		f	1947
Jari		m	1588	Felicia		f	1202
Rico		m	1561	Stefano		m	896
Renzo		m	920	Gino		m	1804
Zoë		f	4590	Angelo		m	1616
Noa		f	4182	Sergio		m	818
Loïs		f	1591	Alicia		f	1543
Boy		m	1531	Roberto		m	863
Jay		m	1503	Miguel		m	652
Vince		m	1077	Selena			
Dean		m	1045	Selena		f	597
Dion		m	3219	Diego		m	1103
Roan		m	1179	Juan		m	550
Rowan		f	879	Serena		f	1192
Luca		m	2478	Chiara		f	1117
Nino		m	1447	Gabriëlla		f	686
Noëlle		f	1262	Daniëlla		f	606
Romée		f	690	Gabriël		m	554

TABLE 4 (Continued)

Gianni	m	611	Mohamed	m	9964
Fabio	m	567	Fatima	f	3684
			Youssef	m	2007
ITALIAN NAMES			Khadija	f	1299
unclassified			Brahim	m	787
3 names - 1830 children			Zahra	f	578
67\% male - 33\% female			Halima	f	574
0.0\% 1987 < 0.0\% 2003			Mustapha	m	526
	R(\%)	N	Khalid	m	1584
LEONARD	7	1830	Rachid	m	1434
			Said	m	1057
Leonard	m	877	Jamal	m	958
Louisa	f	597	Laïla	f	519
SLAVIC NAMES			Ahmed	m	2511
3 names - 1,794 children			Hassan	m	832
35\% male - 65\% female			Saida	f	525
0.0\% 1987 < 0.0\% 2003			Karima	f	1226
			Latifa	f	730
	R(\%)	N	Salima	f	603
IVANA	3	1794	Rachida	f	697
	f	722	Hayat	f	623
lgor		633	Fatiha	f	544
	m		Najat	f	501
NON-WESTERN NAMES			Asma	f	951
			Maryam	f	909
ARABIC NAMES 1					

ARABIC NAMES 2

14 names - 17,447 children
36\% male - 64\% female
$0.4 \% 1987$ > 0.3\% 2003
Whereas Arabic names are considered by no more than 3% of all parents, the cluster NADIA is an exception with 13%, probably because Nadia itself also is a well-known Slavic name.

	L	$\mathrm{R}(\%)$	N
NADIA	0.5	13	6128
SIHAM	0.7	2	4024
ACHRAF	0.7	1	3853
SAMIR	0.9	2	3442
Nadia		f	3741
Samira		f	2387

TABLE 4 (Continued)

Siham	f	1317	FADOUA	0.7	1	1814
Amal	f	1221	ASMAE	0.7	1	1502
Naoual	f	787				
llam	f	699	Hicham		m	1285
Achraf	m	995	Yasmina		f	1279
Anouar	m	907	Yassin		m	735
Soufiane	m	818	Hanane	f	1121	
Mounir	m	690	Fadoua	f	602	
Samir	m	1445	Imad	m	599	
Karim	m	1358	Asmae	f	568	
Saloua	f	639				

ARABIC NAMES 5

upcoming
31 names - 30,203 children
50\% male - 50\% female
0.3\% 1987 < 1.0\% 2003

	L	R(\%)	N	The Arabic names in this group are increasingly popular, but Mohamed is not in this group.				
TARIK	0.8	2	4287					
BOUCHRA	0.6	2	1682		L	R(\%)	N	
IKRAM	0.8	2	1449	YASSINE	0.7	2	10,027	
REDOUAN	0.8	2	1314	OMAR	0.9	2	8214	
FOUAD	0.6	1	1008	HAMZA	0.6	2	3594	
				IMANE	0.7	2	3489	
Tarik		m	1156	YASMINE	0.9	2	3340	
Adil		m	915	OUMAIMA	0.7	1	1539	
Nabil		m	823	Yassine		m	2120	
Jaouad		m	652	Youssra				
Bouchra		f	663	Youssia		f	1410	
		Younes			m	1228		
Ikram			f	994	Kaoutar		f	938
Redouan		m	949	Anissa		f	751	
Fouad		m	797					
		Loubna			f	747		
ARABIC NAMES 4					Dounia		f	721
15 names - 8785 children				Marouane		m	585	
34\% male - 66\% femal				Sana		f	578	
0.2\% 1987 > 0.2\% 200				Sanae		f	564	
	L	R(\%)	N	Omar		m	1985	
HICHAM	0.8	2	3641	Zakaria		m	1609	
HANANE	0.6	2	1828	Ayoub		m	1368	

TABLE 4 (Continued)

Hajar	f	1127	Though the loadings for the clusters in this group are low, they definitely join Turkish names.		
Mariam	f	951			
Chaima	f	726		$R(\%)$	N
Hamza	m	1803	IBRAHIM	3	3905
Soumaya	f	639	MERVE	2	2656
Imane	f	1482	HAKAN	1	2402
llias	m	1318	YASIN	1	1951
Amine	m	689			
Yasmine	f	1399	DENIZ	1	1916
Anass	m	1116	HASAN	1	1781
Oussama	m	825	SERKAN	1	1469
Oumaima	f	922	WALID	2	1032
Chaimae	f	617	KÜBRA	1	801
TURKISH NAMES			DUYGU	1	783
unclassified 1			AZIZ	1	718
6 names - 7127 children			ZAINAB	1	693
63\% male - 37\% female			Ibrahim	m	2240
0.1\% 1987 < 0.2\% 2003				m	
			Ismail	m	1665
L	R(\%)	N	Merve	f	1538
EMRE	1	4488	Meryem	f	1118
ESRA	2	2639	Hakan	m	833
Emre	m	1729	Gökhan	m	556
Yusuf	m	1238	Volkan	m	545
Yunus	m	816	Yasin	m	1069
Enes	m	705	Yasemin	f	882
Esra	f	1911	Deniz	m	804
Esma	f	728	Derya	f	735
TURKISH NAMES			Hasan	m	1032
unclassified 2			Hüseyin	m	749
28 names - 20,107 children			Serkan	m	683
63\% male - 37% female			Walid	m	542
0.5\% 1987 > 0.3\% 2003			Kübra	f	801

TABLE 5
FIRST NAMES FROM THE UK (1982-2002)
See Table 4 for an explanation

NAMES IN DECLINE				Stephen	m	19,005
TRADITIONAL NAMES				Steven	m	17,957
146 names - 1,470,464 children				Jennifer	f	17,910
55\% male - 45\% female				Nicola	f	17,590
46.7\% 1987 > 13.0\% 2001				Kirsty	f	17,426
Until the 1990s, naming in the UK was very much dominated by this group of traditional names, without subclusters. Popularity has dramatically dropped since then. The group is strongly related to the Scottish and Gaelic names and has a loading of 0.628 to those. Because of its size and distinct character, the group is presented separately.				Louise	f	17,138
				Stephanie	f	16,920
				Kelly	f	15,184
				Lisa	f	14,417
				Peter	m	14,070
	L	R(\%)	N		m	3,245
DANIEL	0.6	71	1,470,464	Hayley	f	13,006
Daniel		m	76,508	Anthony	m	12,759
James		m	75,337	Stacey	f	11,739
Matthew		m	58,591	Leanne	f	10,779
Christopher		m	54,417	Michelle	f	10,659
Rebecca		f	48,739	Martin	m	10,637
Emma		f	46,644	Dean	m	10,350
Michael		m	45,720	Stuart	m	10,217
Sarah		f	44,304	Anna	f	10,076
Laura		f	44,278	Catherine	f	9896
David		m	43,946	Darren	m	9439
Adam		m	39,186	Gary	m	9265
Andrew		m	39,017	Shaun	m	8791
Robert		m	29,832	Helen	f	8647
Samantha		f	26,832	Philip	m	8629
Mark		m	25,756	Rachael	f	8570
Rachel		f	25,660	Kimberley	f	8330
Paul		m	22,920	Joanne	f	8176
Richard		m	22,367	Kevin	m	7904
Gemma		f	22,182	Kerry	f	7578
Jonathan		m	21,564	Carl	m	6611
Natalie		f	20,070	Kathryn	f	6477
Craig		m	19,334	Amanda	f	6444
Claire		f	19,321	Clare	f	5958
Lee		m	19,201	Alan	m	5042

TABLE 5 (Continued)

Gavin	m	5027	Keith		m	1690
Caroline	f	4827	Lyndsey		f	1652
Donna	f	4727	Nichola		f	1632
Carly	f	4591	Shelley		f	1625
Jenna	f	4513	Tracey		f	1570
Mathew	m	4195	Dawn		f	1538
Maria	f	4059	Sharon		f	1421
Ashley	f	3912	Angus		m	1346
Alison	f	3839	Shona		f	1234
Ellen	f	3787			m	1212
Wayne	m	3692			m	
Rory	m	3648	Elaine		f	1178
Christina	f	3501	Debbie		f	1146
Karen	f	3389	Johnathan		m	1128
Colin	m	3281	Pamela		f	1100
Graham	m	3267	Tina		f	1096
Phillip	m	3142	Lorraine		f	1040
Melanie	f	3030	Jayne		f	1024
Cheryl	f	2875	Derek		m	1001
Suzanne	f	2633	TRADITIONAL NAMES 2			
Brian	m	2624	19 names - 43,843 children			
Julie	f	2507	77\% male - 23\% female			
Cara	f	2473	1.3\% 1987 > 0.6\% 2001			
Christine	f	2471				
Marie	f	2471	The traditional names John, Mary, Ann, Patrick, and Margaret form the dominant cluster in this group.			
Adrian	m	2398		,	R(\%)	N
Jonathon	m	2363		L	(\%)	N
Barry	m	2351	JOHN	0.7	66	36,472
Angela	f	2290	KATHLEEN	0.8	35	2737
Susan	f	2110	PATRICIA	0.6	31	2103
Graeme	m	2070	GERARD	0.7	21	1851
Gillian	f	2034	GERALDINE	0.4	13	680
Kim	f	2001	John		m	23,156
Jacqueline	f	1978	Patrick		m	7381
Martyn	m	1970	Mary		f	3116
Lynsey	f	1960	Margaret		f	1258
Lindsay	f	1959	Ann		f	931
Andrea	f	1863	Kathleen		f	1710
Daryl	m	1785	Eric		m	558

TABLE 5 (Continued)
 flavor.

	L	R(\%)	N	52 names - 122,368 children			
ELIZABETH	0.7	66	26,453	75\% male - 25\% female			
JOANNA	0.8	54	9978	3.1\% 1987 > 2.1\% 2001			
ANNABEL	0.5	35	6151	The group of Scottish and Gaelic names is in decline, just like the other traditional English names. The cluster HEATHER seems a bit of an outlier with some names linked to nature.			
ALICIA	0.6	37	5861				
JULIA	0.6	39	2241				
Elizabeth		f	15,095		L	R(\%)	N
Katherine		f	9993	SCOT	0.8	54	54,098
Katharine		f	1365	FIONA	0.8	42	25,284
Joanna		f	5370	IAN	0.5	66	12,384
Philippa		f	2207	HEATHER	0.5	55	12,149
Robin		m	1732	ALISTAIR	0.7	37	9485
Susannah		f	669	GREGORY	0.7	41	8968
Annabel		f	1905	Scott		m	20,107
Louisa		f	1753	Ross		m	11,266
Lucinda		f	1109	Cameron		m	8560
Camilla		f	1005	Grant			
Alicia		f	2574	Grant		m	3570
		f	1311	Fraser		m	2458
		f	1311	Stewart		m	1871
Annabelle		f	1014	Kirstie		f	1680
Verity		f	962	Greg			
Julia		f	1728			m	1605
Rosalind		f	513	Blair		m	717
			Murray		m	565	
JANE \& RUTH				Fiona		f	5358
5 names - 8105 children				Calum		m	3550
0\% male - 100% female				Lorna		f	2551
0.3\% 1987 > 0.1\% 2001				lain		m	2444

TABLE 5 (Continued)

Ewan	m	1871	Jade	f	17,620
Kirsten	f	1746	Amber	f	5705
Alastair	m	1646	Jasmine	f	4807
Euan	m	1558	Jasmin	f	1382
Catriona	f	1184	Keeley	f	1215
Eilidh	f	1038	Crystal	f	707
Ian	m	7361	Coral	f	616
Neil	m	5023	Kirk	m	585
Heather	f	6136	Danny	m	4190
Frances	f	2154	Ricky	m	3508
Rosemary	f	1628	Tony	m	2561
Hazel	f	1488	Terry	m	1710
Tessa	f	743	Nicky	m	861
Alistair	m	2393	Deanna	f	515
Duncan	m	1655	Shane	m	6277
Kenneth	m	1585	Charlene	f	3423
Finlay	m	923	Sadie	f	1475
Alasdair	m	832	Tammy	f	1310
Donald	m	573	Tara	f	3347
Bonnie	f	562	Tanya	f	2732
Malcolm	m	543	Russell	m	2206
Gregory	m	3248	Nigel	m	758
Douglas	m	1619	Tania	f	739
Gordon	m	1285	Kelvin	m	620
Allan	m	1254	Lindse	f	2168
Alec	m	734			

GEMS \& NAMES IN -y

29 names - 72,719 children
33\% male - 67% female
1.8\% 1987 > 1.3\% 2001

Gems like jade, amber, crystal and coral inspire parents, who also seem to have affinity to names in -y .

	L	$\mathrm{R}(\%)$	N
JADE	0.4	44	32,637
DANNY	0.5	46	13,815
SHANE	0.5	47	13,287
TARA	0.7	53	6079
RUSSELL	0.6	42	4323
LINDSEY	0.6	46	2578

DIAN
17 names - 13,642 children
9% male - 91% female
$0.5 \% 1987$ > 0.1\% 2001
Also this group has two clusters with female names in -y .

	L	$\mathrm{R}(\%)$	N
PAULA	0.4	33	3844
VICKY	0.6	32	3207
TRACY	0.7	31	3016
DIANE	0.7	28	1854
RAYMOND	0.5	36	1721
Paula		f	1747
Denise		f	796

TABLE 5 (Continued)

Sandra		f	583	Selina		f	994
Vicky		f	1609	Anita		f	721
Becky		f	1043	TONI			
Carley		f	555	11 names - 13,464 children			
Tracy		f	1212	16\% male - 84\% female			
Wendy		f	714	0.5\% 1987 > 0.1\% 2001			
Mandy		f	698				
Diane		f	790	A small group of mainly female names, consisting o typical pairs of names with quite a few ending with an i sound.			
Carol		f	722				
Raymond		m	1279		L	R(\%)	N
FEMALE NAMES IN -a				TONI	0.7	45	5509
21 names - 35,157 children				DAMIEN	0.5	41	3597
4\% male - 96\% female				STACY	0.4	31	2286
$0.9 \% 1987$ > 0.5\% 2001 (2072							
Many names in this group of female names are ending on -a, with the exception of the clusters GABRIELLE and TERENCE.				Toni		f	3538
				Terri		f	1971
				Damien		m	1810
	L	R(\%)	N	Carrie		f	1412
NATASHA	0.5	65	15,729	Stacy		f	1337
KATRINA	0.7	42	6140	Ami		f	638
GABRIELLE	0.4	31	4458	Kay		f	863
CARLA	0.5	45	4372	Jody		f	836
TERENE	0.4	35	2743	FRANK			
SELINA	0.7	27	1715	6 names - 4540 children			
Natasha		f	13,900	67\% male - 33\% female			
Nikita		f	1398	0.1\% 1987 > 0.0\% 2001			
Katrina		f	2745		L	R(\%)	N
Sabrina		f	1581	MICHEAL		40	2165
Sonia		f	1205	FRANK	0.7	26	1258
Monica		f	609	TERESA	0.5	23	1117
Gabrielle		f	1972	Micheal			
Dominique		f	801	Micheal		m	1786
Dionne		f	785	Frank		m	668
Carla		f	2896	Roy		m	590
Justine		f	819	Teresa		f	673
Gina		f	657	DARRYL			
Terence		m	1070	16 names - 16,452 children			
Sarah-Jane		f	638	49\% male - 51\% female			
Anne-Marie		f	535	0.5\% 1987 > 0.2\% 2001			

TABLE 5 (Continued)

	L	R(\%)	N		L	R(\%)	N
MARC	0.6	56	5898	THOMAS	0.7	58	171,897
NIKKI	0.5	33	2976	SAMUEL	0.5	60	126,442
CASSIE	0.5	29	2322	CHARLOTTE	0.5	66	88,596
DARRYL	0.7	29	2242	ALEXANDER	0.5	67	68,840
ROSANNA	0.5	25	1927	OLIVER	0.8	40	30,112
FERN	0.3	17	1087	ALEX	0.7	37	22,140
Marc		m	4601	JOEL	0.6	27	19,286
Jon		m	1297	MOLLY	0.7	23	17,594
Nikki		f	1797	DOMINIC	0.6	41	16,016
Trevor		m	635	JACOB	0.6	32	10,798
Kris		m	544	LYDIA	0.8	27	10,599
Cassie		f	886	ELLA	0.5	31	9844
Kellie		f	723	IMOGEN	0.8	17	8860
Christie		f	713	LOUIS	0.5	28	7879
Darryl		m	1051	LOIS	0.7	19	6839
Maxine		f	821	ELLIOTT	0.6	25	6626
Rosanna		f	1066	FLORENCE	0.5	13	5810
Fern		f	769	LILY	0.6	17	5584
JEFFREY				NATHANIEL	0.8	20	4215
				MILLIE	0.5	13	4127
70\% male - 30\% female				FREYA	0.6	17	3795
0.0\% 1987 > 0.0\% 2001				HARRISON	0.5	25	3540
				ISOBEL	0.5	30	2909
	L	R(\%)	N	Thomas			66014
JEFFREY	0.6	23	808			m	66,014
				William		m	27,049
Jeffrey		m	563	George		m	17,861
				Harry		m	16,335
UPCOMING NAMES				Edward		m	11,247
POPULAR CLASSIC NAMES				Eleanor		f	10,703
150 names - 652,348 children				Charles		m	9161
72\% male - 28% female				Harriet		f	5776
10.9\% 1987 < 20.0\% 2001				Henry		m	5426
Where the traditional group DANIEL collapsed, this group of popular names doubled in size. The clusters, which mostly have a classic flavour, are varied with male royal names in the cluster THOMAS, Hebrew names in the clusters SAMUEL, JOEL, and JACOB, French names in the clusters CHARLOTTE, DOMINIC, and LOU-				Frederick		m	2045
				Samuel		m	32,627
				Joshua		m	32,103
				Benjamin		m	31,821
IS, abbreviated names in the cluster ALEX, names in -y in the cluster MOLLY, names on -a in the cluster				Joseph		m	29,891
ELLA, and so on.				Charlotte		f	35,957

TABLE 5 (Continued)

Victoria	f	21,627	Serena	f	852
Alexandra	f	9000	Reuben	m	750
Georgina	f	8375	Caleb	m	605
Francesca	f	5634	Molly	f	6653
Claudia	f	1346	Rosie	f	4121
Lucas	m	1342	Daisy	f	3339
Gabriella	f	1325	Poppy	f	1881
Daniella	f	1286	Polly	f	966
Antonia	f	1248	Nancy	f	634
Alexander	m	27,809	Dominic	m	6968
Nicholas	m	15,962	Christian	m	3288
Jason	m	12,716	Sebastian	m	2061
Timothy	m	7093	Tristan	m	1225
Justin	m	1826	Benedict	m	930
Laurence	m	1607	Nicolas	m	522
Jeremy	m	974	Emilia	f	518
Julian	m	853	Beatrice	f	504
Oliver	m	19,109	Jacob	m	8895
Toby	m	3477	Zachary	m	1903
Lawrence	m	1632	Lydia	f	4409
Helena	f	1558	Phoebe	f	3336
Oscar	m	1551	Mia	f	2202
Tobias	m	1400	Esme	f	652
Felix	m	824	Ella	f	4549
Barnaby	m	561	Lara	f	1716
Alex	m	7491	Nina	f	1316
Max	m	5341	Maya	f	762
Elliot	m	3958	Anya	f	599
Guy	m	513	Jak	m	505
Miles	m	1222	Imogen	f	2857
Leo	m	1134	India	f	986
Hugh	m	1034	Madeline	f	866
Joel	m	4120	Hugo	m	741
Ethan	m	4101	Meghan	f	687
Deborah	f	2812	Maximilian	m	588
Isaac	m	1982	Miranda	f	580
Esther	f	1317	Louis	m	5502
Martha	f	1104	Gabriel	m	889
Miriam	f	895	Lois	f	1754

TABLE 5 (Continued)

Matilda	f	747		L	R(\%)	N
Eva	f	742	HANNAH	0.5	56	172,678
Jemima	f	721	SOPHIE	0.5	54	118,246
Tegan	f	690	KYLE	0.6	45	56,725
Tabitha	f	612	LUKE	0.4	50	54,359
Fergus	m	570	GEORGIA	0.5	43	35,946
Gregor	m	568	CHELSEY	0.6	34	20,270
Elliott	m	2597	MITCHELL	0.8	19	16,393
Harvey	m	1784	LEAH	0.7	4	13,850
Shelby	f	828	COURTNEY	0.7	28	8224
Spencer	m	726	BRANDON	0.7	27	6730
Frazer	m	691	KANE	0.6	17	6555
Florence	f	1063	LEIGH	0.4	35	6437
Arthur	m	752	DEMI	0.6	24	5726
Alfred	m	715				
Theo	m	669	CURTIS	0.6	29	3750
Eliza	f	551	BRYONY	0.4	26	3112
Edmund	m	507	KIERON	0.5	32	2702
Lily	f	2896	HOPE	0.5	15	1973
Ruby	f	1840	Hannah		f	35,958
Scarlett	f	848	Jessica		f	32,167
Nathaniel	m	1610	Danielle		f	19,397
Myles	m	972	Nathan		m	17,895
Theodore	m	640	Bethany		f	13,716
Flora	f	516	Abigail		f	11,633
Millie	f	1799	Nicole		f	9528
Maisie	f	1539	Naomi		f	6158
Madison	f	789	Marcus		m	3816
Freya	f	1890	Chantelle		f	3604
Rowan	m	875	Rebekah		f	2882
Saskia	f	671	Alisha		f	1935
Harrison	m	2608	Roxanne		f	1754
Maxwell	m	932	Nadine		f	1481
Isobel	f	2439	Simone		f	1436
POPULAR TRENDY NAMES			Elisha		f	1151
141 names - 533,676 children			Sophie		f	32,326
34\% male - 66% female			Katie		f	27,490
8.6\% 1987 < 15.2\% 2001			Chloe		f	27,141
This group almost doubled in size. The clusters seem rather varied, and unorthodox in several cases.			Ashley		m	14,018
			Bradley		m	9337

TABLE 5 (Continued)

Hollie	f	4721	Chelsie	f	732
Wesley	m	1309	Mitchell	m	3415
Lucie	f	1028	Tyler	m	3385
Kyle	m	11,190	Ellis	m	1564
Kayleigh	f	10,346	Taylor	m	1512
Melissa	f	8998	Mason	m	1211
Reece	m	6148			
Karl	m	4976	Jordon	m	1107
Kelsey	f	1977	Charley	f	964
Brett	m	1892	Bailey	m	798
Vanessa	f	1880	Harley	m	723
Arron	m	1714	Ebony	f	714
Kimberly	f	1329	Leah	f	7334
Vincent	m	1038	Jay	m	3362
Luke	m	32,391	Corey	m	1725
Jake	m	15,165	Casey	f	1429
Zara	f	2469	Courtney	f	5902
Zak	m	1579	Brooke	f	1332
Kai	m	1258			
Kira	f	926	Chelsey	f	990
Jed	m	571	Brandon	m	4633
Georgia	f	11,069	Drew	m	959
Jodie	f	9425	Brad	m	571
Jemma	f	4581	Chad	m	567
Robyn	f	3825	Kane	m	2030
Jamie	f	1778	Tia	f	1503
Abby	f	1688	Troy	m	809
Damian	m	1203	Summer	f	683
Billie	f	866	Paris	f	646
Todd	m	766	Leigh	m	1443
Stevie	f	745	Warren	m	1374
Chelsea	f	6885	Glenn	m	1355
Leon	m	3199			
Jordan	f	2437	Hayden	m	1271
Charlie	f	1676	Keely	f	668
Leigh	f	1383	Demi	f	2186
Alex	f	1154	Morgan	f	1637
Levi	m	863	Taylor	f	1373
Cory	m	741	Alexandria	f	530

TABLE 5 (Continued)

Curtis		m	2616	Garry		m	1092
Candice		f	703	Kaylee		f	508
Bryony		f	1760	JOSH			
Brogan		f	689	8 names - 23,991 children			
Jared		m	663	15\% male - 85\% female			
Kieron		m	1945	0.3\% 1987 < 1.2\% 2001			
Kurtis		m	757	Another few names of trendy character, with a smal cluster of female names an i sound.			
Hope		f	842				
Jesse		m	577		L	R(\%)	N
Casey		m	554	ELLIE	0.5	38	19,494
				JOSH	0.6	23	3629
NAMES IN -ie				KERI	0.3	16	868
31 names - 66,474 children							
79\% male - 21\% female				Ellie		f	7005
1.3\% 1987 < 2.0\% 2001				Aimee		f	5904
				Abbie		f	4538
This group is largely dominated by the cluster IAMIE, whose name ending in -ie is typical. Popularity is growing.				Amie		f	2047
				Josh		m	3051
	L	R(\%)	N	Zack		m	578
JAMIE	0.4	46	61,370	ABBREVIATED NAMES			
APRIL	0.5	37	1988	26 names - 238,599 children			
GARRY	0.4	25	1712	33% male - 67\% female			
KAYLEE	0.5	17	1404	4.0\% 1987 < 7.2\% 2001			
Jamie		m	24,413	Abbreviated, short names are increasingly popular as well, with clusters that are gender specific.			
Charlie		m	6869				
Dale		m	4465	L		R(\%)	N
Billy		m	4030	JACK	0.6	43	77,331
Alfie		m	2135	AMY	0.8	63	65,049
Robbie		m	1950	EMILY	0.5	45	57,786
Mollie		f	1911	HOLLY	0.5	48	16,617
Annie		f	1801	KATE	0.8	55	10,394
Kylie		f	1617	FAYE	0.5	42	6728
Glen		m	1375	SALLY	0.7	50	4694
Tommy		m	1328	Jack		m	41,801
Kerrie		f	1274	Ben		m	14,426
Josie		f	1087	Sam		m	10,616
April		f	1673	Joe		m	7226

TABLE 5 (Continued)

TABLE 5 (Continued)

Megan		f	20,311	Ciaran		m	2307
Gareth		m	7913	Sinead		f	2098
Sian		f	5120	Brendan		m	1773
Bethan		f	3683	Aiden		m	1668
Rhian		f	1288	Francis		m	1480
Cerys		f	1046	Lianne		f	1105
Cassandra		f	980	Roisin		f	1101
Kayley		f	926	Conor		m	5462
Dillon		m	553	Erin		f	3891
Rhiannon		f	2964	Michaela		f	3170
Angharad		f	678	Niamh		f	2942
Haydn		m	614	Ciara		f	2090
IRISH NAMES				Shauna		f	1702
				Ronan		m	867
45 names - 263,171 children				Orla		f	698
69\% male - 31\% female				Niall		m	2765
3.5\% 1987 < 7.3\% 2001				Aoife		f	668
Also the clusters with Irish names more than doubled in size over the last fifteen years.				Eoin		m	506
	L	R(\%)	N	Keira		f	563
RYAN	0.7	51	236,517	FEMALE NAMES IN -a			
CONOR	0.9	35	21,194	24 names - 35,497 children			
NIALL	0.8	26	4409	13\% male - 87\% female			
KEIRA	0.4	20	1051	0.5\% 1987 < 1.3\% 2001			
Ryan		m	35,587	Names in this group, ending in -a have a Romanic origin. The few male names in this group are Ger-			
Lauren		f	32,162	manic.			
Liam		m	25,151	L		R(\%)	N
Jordan		m	20,732				18,581
Callum		m	16,565	OLIVIA	0.7	31	
Aaron		m	16,490	ADELE	0.4	35	11,463
Sean		m	14,918	NADIA	0.6	27	2584
Connor		m	13,540	ELENA	0.8	19	1,564
Kieran		m	11,480	BIANCA	0.5	24	1305
Shannon		f	10,512	Olivia		f	11881
Caitlin		f	5794	Sophia		f	2723
Ashleigh		f	5488	Isabella		f	1726
Siobhan		f	3516	Lucia		f	518
Aidan		m	3496	Natalia		f	504
Declan		m	3496	Adele		f	1942

TABLE 5 (Continued)

Tiffany		f	1873	Heidi		f	1522
Stefan		m	1870	Aisha		f	1497
Alana		f	1433	Ayesha		f	1022
Kristian		m	1326	Hassan		m	981
Tamara		f	1202			m	981
Shanice		f	746	Sana		f	613
Anton		m	545	Leila		f	582
Chantel		f	526	Farah		f	504
Nadia		f	1813	Antony		m	2464
Layla		f	771	Janine		f	1068
Elena		f	857	Kristopher		m	879
Bianca		f	958	Kristina		f	803
KARA				Ellis		f	728
6 names - 3,524 children				Karina		f	578
0\% male - 100% female				Corinne		f	524
0.1\% 1987 < 0.1\% 2001				Blake		m	769
	L	R(\%)	N	Hanna		f	674
KARA	0.7	10	1936	Leona		f	580
SAFFRON	0.6	4	1588	Sasha		f	1705
Kara		f	1163	Laurie		f	628
Saffron		f	726				
SARA				NON-WESTERN NAMES			
25 names - 27,243 children				ARABIC NAMES 1			
20\% male - 80\% female				upcoming			
0.6\% 1987 < 0.6\% 2001				9 names - 19,229 children			
In this group, the cluster SARA is special as it includes names from both Western and Arabic origin, which originates in the fact that Sara and Leila belong to the name inventory of both cultures. Heidi is in the cluster because of a strong attraction to Sara.				$\begin{aligned} & 92 \% \text { male - 8\% female } \\ & 0.3 \% 1987<0.8 \% 2001 \end{aligned}$			
					L	R(\%)	N
	L	$R(\%)$	N	MOHAMMED	0.8	4	14,362
SARA	0.4	30	15,410	MUHAMMAD	0.8	2	2503
ANTONY	0.6	36	7044	KIRAN		1	1469
BLAKE	0.6	25	2456	FAISAL		2	895
SASHA	0.7	36	2333	Mohammed		m	11,116
Sara		f	4687	Mohammad		m	3246
Yasmin		f	2840	Muhammad		m	1783

TABLE 5 (Continued)

Discussion and further research

Given names of children can reveal cultural, ethnic, linguistic, and socioeconomic backgrounds of parents, but the relationships are usually complex, hidden, and noisy. And although some relationships are much stronger than others, in all cases extreme care should be taken in their interpretation. We had the advantage that we could base our analysis on the names of children born in the same family, rather than a mere
list of names of children. This enabled us to reveal structures in naming that are otherwise very difficult to unravel. Whereas ethnic and linguistic backgrounds of exogenic names can be inferred from popularity in cultures, countries, or linguistic communities from which they originate or where they currently have a high frequency, this is much less obvious for cultural and socioeconomic backgrounds in endogenic names. The self-organizing methodology we propose has the advantage that it does not require the assumption of explicit underlying factors beforehand. The interpretation of the results comes afterwards, and could be based on correlations with factors like income, educational level of the parents, or geodemographic spread. The advantage is that these correlations need not to be based on individual names, but on the aggregated level of name groups, which statistically makes a much stronger case.

The interpretation of name groups in the present study is still impressionistic. Its validity resides in the plausibility of the results, the reason why we included the full lists in Tables 4 and 5 . Further research is under way that will link socioeconomic information and names of children, both available at the family level. The power of using name groups in relation to geodemographic spread has been demonstrated already by Bloothooft et al. (2004). In contrast to individual names, name groups have a sufficient frequency at the level of postal code area (with a total of 396I areas in the Netherlands) to define a reliable profile of their presence. Using factor analysis on these profiles, a limited number of most characteristic name group profiles can be distinguished. By attaching the best fitting of these profiles to each postal code area, a map of the Netherlands can be drawn that highlights naming preferences. The same can be done for the UK.

There is a correspondence between the analysis of the linked information of given name and surname in the same person and CEL factors as performed by Tucker (2003), and the linked information of given names of children in the same family in our study. In Tucker's case, the knowledge of onomastic experts on the origin (or usage) of first names could be used to obtain probabilities on the otherwise unknown ethnic and linguistic background of surnames. However, the combination given name and surname can be seen as a pair of linked information, just like the pair(s) of given names in the same family. With minor adaptations, the self-organizing clustering we applied is methodologically applicable to any combination of types of names, including the combination of given name and surname. As in our case, only when it comes to the interpretation of resulting clusters ex hoc expert knowledge will be indispensable.

Our approach is strongly motivated by the opportunity to let the data speak for themselves. The current procedures are mathematically well defined - much more solid than in the original publications of Bloothooft (2001, 2002). But, to be successful, we learned that the analysis procedure should be very carefully tuned. A few notes:
(I) The analysis should be limited to names with relatively high frequency, and for each name there should be enough names of brothers and sisters to identify statistical relationships reliably. Once name groups have been identified on such a solid basis, names with lower frequencies could be associated to
these, although uncertainties and misallocations grow rapidly with decreasing numbers.
(2) Because of the severe conditions on name frequencies in our analysis, many CEL types that are identified for the UK by Mateos et al. (2007) do not show up in our analysis. A huge majority (I36 out of 186) of their CEL types have a frequency of less than 10,000 people. It is likely that names in these CEL types cannot be distinguished by a statistical analysis of systematic co-occurrences, but only under the availability of expert knowledge and additional information. On the other hand, the largest CEL types found by Mateos were England (31 million), Scotland (4.7 million), Ireland (3.2 million) and Wales (3.1 million), on a total sample of 46.4 million people. It is within these major CEL types that our analysis provides details related to subcultures.
(3) The name groups have a considerable overlap, with the exception of the culturally very distinct groupings of Western and Arabic and Turkish names. Besides this major division, there are almost no names that are only found in combination with names from their own group. The most complicating are the popular names, which are found in combination with virtually all other names (within the same culture), and obscure otherwise clear relationships. Our approach concentrated on local relations (the nearest neighbours only), utilizing the relatively few prototypical parents that fully follow a subculture naming pattern for their children.
(4) The way the relation between names is defined, is central to any analysis method. The ideal relation measure is symmetric between names and insensitive to the popularity of the names. We believe that our attraction measure fulfils these requirements quite well, although there remains a difficulty in the estimation of the relevant part of the population that would consider particular names for their children.
(5) The name space consists of clusters of names of very different sizes, from strongly related name pairs to much bigger groups of names. It is important not to lose sight of the smaller clusters that often demonstrate interesting details. A hierarchical structure might best represent the supposedly layered structure of the name space. The standard hierarchical cluster techniques fail, however, to produce meaningful results.
(6) The large variation in the size of name clusters does not make it attractive to use a k-nearest neighbours approach since a distance measure built on a fixed number of neighbours endangers the identification of the smaller clusters. A carefully tuned exponential Minkowski weighting of the attraction between a name and a name cluster solves the issue in an elegant way.

Whereas this study has a methodological focus, the application on a large population dataset from both the Netherlands and the UK also allows for some contrasting observations. A very important observation is that the method seems to work equally well for the Netherlands and the UK. Of course, the detailed results are quite different, but the idea that we may learn from parental preferences holds for both countries, and this suggests a general applicability.

As expected, in both countries, clusters emerge of names belonging to specific CEL groups, both at the cluster level and the grand cluster level. In addition, clusters emerge with defining characteristics that are not so obvious from standard classifications or social stratifications of society into groups. For instance, for the UK, beside clusters of typical Scottish, Welsh, Irish, Italian, French, Hebrew, and Arabic names, we found clusters of gems name for girls (Jade, Amber, Crystal, Coral) and a group of names ending in -y for boys (Danny, Ricky, Tommy); for the Netherlands, beside clusters of Frisian, Nordic, French, Italian, English, Hebrew, Turkish, and Arabic names, a cluster for flower names for girls (Iris, Fleur, Roos) and classical Dutch names (Floris, Laurens, Maurits) emerged.

In the UK the group DANIEL, containing I46 traditional names, covered in the 1980s still half of the total sample, but this dramatically reduced to 13% within one generation. A comparable decline of traditional names is observed in the Netherlands, where it had an earlier start. The clusters JOHANNES and JAN, with 197 traditional names, show a decline from 12.3 to 5.7% between 1985 and 2004, but these traditional names had a coverage of over 80% in the middle of the twentieth century.

The decline of traditional names has opened the way for a rich and much more varied naming pattern in both countries, which very clearly indicates different motives and backgrounds of parents. Common tendencies in the Netherlands and the UK are the emergence of clusters with trendy short or abbreviated names, names of gems and from nature for girls, alongside names connected with regional identity and language (Frisian in the Netherlands, Celtic/Gaelic in the UK), foreign names (although they form a substantial larger part in the Netherlands than in the UK), names from the Koran or Bible, and Hebrew names. An interesting feature in both countries is that several clusters have a dominating gender. That implies that parents have a strong gender-related preference. When they name their daughters after flowers, this preference is much stronger than a likely much more varied (and therefore individually less probable) choice for names for their sons.

We have studied the existence of name groups within a limited period of about twenty years. Even in such a relatively short period the increase and decline of groups could be observed. This indicates that, just like names themselves, also name groups have a life cycle. To better understand the origins of name groups, knowledge of their dynamics is necessary: when and where did a name group arise, when was the period of maximum popularity, did a name group emerge from a disappearing group, and so on. We recently acquired a corpus of the given names of the full population of the Netherlands (16 million) from the civil registration, covering dates of births throughout the twentieth century, and including family relations and places of birth. With this rich source at hand we hope to unravel the dynamic mechanisms of name groups in more detail.

Acknowledgement

We wish to express our gratitude to the Social Security Bank in the Netherlands and the HM Revenue and Customs in the United Kingdom for making available the
invaluable corpora of first names. The opinions expressed in this article are those of the authors and cannot be held to represent the views of the data providers.

Notes

I Lloyd et al. (2004) use the 188i Census of Population survey and the 1998 Electoral Register in Britain to find out the geographical origin of surnames and the geographical movement of names in time. Dividing Britain in postcode areas, they calculate indices of surnames to map the geographical distribution of (groups) of surnames over the country and show that particular (indigenous) surnames are highly concentrated in some parts of the country. Combining these findings with the information contained in name datasets of the US, Canada, Australia, and New Zealand
makes it possible to track migration flows of the past.
${ }_{2}$ Interestingly, the same type of methodological difficulties (among which decisions with respect to accuracy, coverage, normalization of scores, and setting thresholds for including names) encountered in the studies mentioned above appear in our research.
3 Each of the 1409 names can make a name pair with any of the I408 names, so the maximum number of name pairs is $1409^{*} \mathrm{I} 408$, amounting to 1.96 million name pairs.

Bibliography

Bloothooft, Gerrit, 200I. 'Naming in Dutch Families Between 1983 and 1999,' Naamkunde, 33: I-47 (in Dutch). Bloothooft, Gerrit, 2002. 'Naming and Subcultures in The Netherlands,' Proceedings of the International Conference of Onomastic Sciences, ed. E. Brylla and M. Wahlberg, Uppsala, Part 2, 53-62 (published 2006). Bloothooft, Gerrit, van Nifterick, Emma, and Gerritzen, Doreen, 2004. On First Names - How The Netherlands Gets its First Names, Utrecht: Het Spectrum (in Dutch).
Everitt, Brian, Landau, Sabine, and Leese, Morven, 200I. Cluster Analysis, Oxford: Oxford University Press.
Galbi, Douglas A., 2002. 'Long-Term Trends in Personal Given Name Frequencies in England and Wales,' Working paper version I.I, Federal Communications Commission, Washington DC, USA.
Fryer, Roland G., and Levitt, Steven D., 2004. 'The Causes and Consequences of Distinctively Black Names,; The Quarterly Journal of Economics, 119(3): 767-805.
Harding, Seeromanie, Dews, Howard, and Ludi Simpson, Stephen, 1999. 'The Potential to Identify South Asians Using a Computerised Algorithm to Classify Names,' Population Trends, 97: 46-49.
Gorsuch, Richard L., 1983. Factor Analysis, New Jersey: Erlbaum.
Lauerdale, Diane S., and Kerstenbaum, Bert, 2000. 'Asian American Ethnic Identification by Surname,' Population Research and Policy Review, 19: 283-300.
Lloyd, Daryl A., Webber, Richard, and Longley, Paul A., 2004. 'Surnames as Quantitative Evidence Resource for the Social Sciences,' http://www.casa.ucl.ac.uk/surnames/papers.htm
Mateos, Pablo, Webber, Richard, and Longley, Paul, 2007. 'The Cultural, Ethnic, and Linguistic Classification of Populations and Neighbourhoods Using Personal Names,' CASA working paper II6, http://www.casa.ucl. ac.uk/working_papers/paperis6.pdf
Mateos, Pablo, 2003. 'A Review of Name-based Ethnicity Classification Methods and Their Potential in Population Studies,' Population, Space and Place, I3: 243-263.
Tucker, D. Kenneth, 2003. 'Surnames, Forenames, and Correlations,' Dictionary of American Family Names, ed. P. Hanks, New York: Oxford University Press, xxiii-xxvii.

Notes on Contributors

Loek Groot is associate professor in economics of the public sector. His research interests include multidisciplinary economics, sport economics, social justice, and the
interaction between social security and the labor market. Currently he is working on a project on the transnational distribution of public goods.

Gerrit Bloothooft is researcher at the Utrecht Institute of Linguistics. His interests are in speech technology, phonetics, and onomastics. He has published on nominal record linkage, corpus-based methods for name standardization, naming after relatives, and was co-author of a landmark book on first names in the Netherlands. His current focus is on the methodology of studies on full population data from the civil administration.

Correspondence to: Gerrit Bloothooft, Utrecht Institute of Linguistics-OST, Utrecht University Trans IO, 3512 JK Utrecht, The Netherlands. Email: Gerrit.Bloothooft@let.uk.nl

